Smart IO-Link Sensors for Smart Factories

Digitizing the production world in the age of Industry 4.0 increases the need for information between the various levels of the automation pyramid from the sensor/actuator level up to the enterprise management level. Sensors are the eyes and ears of automation technology, without which there would be no data for such a cross-level flow of information. They are at the scene of the action in the system and provide valuable information as the basis for implementing modern production processes. This in turn allows smart maintenance or repair concepts to be realized, preventing production scrap and increasing system uptime.

This digitizing begins with the sensor itself. Digitizing requires intelligent sensors to enrich equipment models with real data and to gain clarity over equipment and production status. For this, the “eyes and ears” of automation provide additional information beyond their primary function. In addition to data for service life, load level and damage detection environmental information such as temperature, contamination or quality of the alignment with the target object is required.

One Sensor – Multiple Functions

This photoelectric sensor offers these benefits. Along with the switching signal, it also uses IO-Link to provide valuable information about the sensor status or the current ambient conditions. This versatile sensor uses red light and lets you choose from among four sensor modes: background suppression, energetic diffuse, retroreflective or through-beam sensor. These four sensing principles are the most common in use all over the world in photoelectric sensors and have proven themselves in countless industrial applications. In production this gives you additional flexibility, since the sensor principles can be changed at any time, even on-the-fly. Very different objects can always be reliably detected in changing operating conditions. Inventory is also simplified. Instead of four different devices, only one needs to be stocked. Sensor replacement is easy and uncomplicated, since the parameter sets can be updated and loaded via IO-Link at any time. Intelligent sensors are ideal for use with IO-Link and uses data retention to eliminate cumbersome manual setting. All the sensor functions can be configured over IO-Link, so that a remote teach-in can be initiated by the controller.

BOS21M_Infographic_EN_122217

Diagnostics – Smart and Effective

New diagnostics functions also represent a key feature of an intelligent sensor. The additional sensor data generated here lets you realize intelligent maintenance concepts to significantly improve system uptime. An operating hours counter is often built in as an important aid for predictive maintenance.

The light emission values are extremely helpful in many applications, for example, when the ambient conditions result in increased sensor contamination. These values are made available over IO-Link as raw data to be used for trend analyses. A good example of this is the production of automobile tires. If the transport line of freshly vulcanized tires suddenly stops due to a dirty sensor, the tires will bump into each other, resulting in expensive scrap as the still-soft tires are deformed. This also results in a production downtime until the transport line has been cleared, and in the worst case the promised delivery quantities will not be met. Smart sensors, which provide corresponding diagnostic possibilities, quickly pay for themselves in such cases. The light remission values let the plant operator know the degree of sensor contamination so he can initiate a cleaning measure before it comes to a costly production stop.

In the same way, the light remission value BOS21M_ADCAP_Produktbild.png allows you to continuously monitor the quality of the sensor signal. Sooner or later equipment will be subject to vibration or other external influences which result in gradual mechanical misalignment. Over time, the signal quality is degraded as a result and with it the reliability and precision of the object detection. Until now there was no way to recognize this creeping degradation or to evaluate it. Sensors with a preset threshold do let you know when the received amount of light is insufficient, but they are not able to derive a trend from the raw data and perform a quantitative and qualitative evaluation of the detection certainty.

When it comes to operating security, intelligent sensors offer even more. Photoelectric sensors have the possibility to directly monitor the output of the emitter LED. This allows critical operating conditions caused by aging of the LED to be recognized and responded to early. In a similar way, the sensors interior temperature and the supply voltage are monitored as well. Both parameters give you solid information about the load condition of the sensor and with it the failure risk.

Flexible and Clever

Increasing automation is resulting in more and more sensors and devices in plant systems. Along with this, the quantity of transported data that has to be managed by fieldbus nodes and controllers is rising as well. Here intelligent sensors offer great potential for relieving the host controller while at the same time reducing data traffic on the fieldbus. Pre-processing the detection signals right in the sensor represents a noticeable improvement.  A freely configurable count function offers several counting and reset options for a wide variety of applications. The count pulses are evaluated directly in the sensor – without having to pass the pulses themselves on to the controller. Instead, the sensor provides status signals, e.g. when one of the previously configured limit values has been reached. This all happens directly in the sensor, and ensures fast-running processes regardless of the IO-Link data transmission speed.

BOS21M_ADCAP_Anwendungsbeispiel.jpg

Industry 4.0 Benefits

In the age of Industry 4.0 and IoT, the significance of intelligent sensors is increasing. There is a high demand from end users for these sensors since these functions enable them to use their equipment and machines with far greater flexibility than ever before. At the same time they are also the ones who have the greatest advantage when it comes to preventing downtimes and production scrap. Intelligent sensors make it possible to implement intelligent production systems, and the data which they provide enables intelligent control of these systems. In interaction with all intelligent components this enables more efficient utilization of all the machines in a plant and ensures better use of the existing resources. With the increasing spread of Industry 4.0 and IoT solutions, the demand for intelligent sensors as data providers will also continue to grow. In the future, intelligent sensors will be a permanent and necessary component of modern and self-regulating systems, and will therefore have a firm place in every sensor portfolio.

To learn more about these smart sensors, visit www.balluff.com.

The Perfect Photoelectric Sensor – Imagine No More

In my last blog, Imagine the Perfect Photoelectric Sensor, I discussed the possibilities of a single part number that could be configured for any of the basic sensing modes: through-beam, retroreflective, background suppression and diffuse. This perfect sensor would also have the ability to change the sensing mode on the fly and download the required parameters for a changing process or format change.  Additionally, it would have the ability to teach the sensing switch points on the fly, change the hysteresis, and have variable counter and time delays.

BOS21M_Infographic_EN_122217.jpg

Tomorrow is here today! There is no need to imagine any longer, technology has taken another giant leap forward in the photoelectric world.  Imagine the possibilities!

Below are just some of the features of this leading edge technology sensor. OEM’s now have the opportunity to have one sensor solve multiple applications.  End users can now reduce their spare inventory.

To learn more visit www.balluff.com.

 

Imagine the Perfect Photoelectric Sensor

Photoelectric sensors have been around for a long time and have made huge advancements in technology since the 1970’s.  We have gone from incandescent bulbs to modulated LED’s in red light, infrared and laser outputs.  Today we have multiple sensing modes like through-beam, diffuse, background suppression, retroreflective, luminescence, distance measuring and the list goes on and on.  The outputs of the sensors have made leaps from relays to PNP, NPN, PNP/NPN, analog, push/pull, triac, to having timers and counters and now they can communicate on networks.

The ability of the sensor to communicate on a network such as IO-Link is now enabling sensors to be smarter and provide more and more information.  The information provided can tell us the health of the sensor, for example, whether it needs re-alignment to provide us better diagnostics information to make troubleshooting faster thus reducing downtimes.  In addition, we can now distribute I/O over longer distances and configure just the right amount of IO in the required space on the machine reducing installation time.

IO-Link networks enable quick error free replacement of sensors that have failed or have been damaged.  If a sensor fails, the network has the ability to download the operating parameters to the sensor without the need of a programming device.

With all of these advancements in sensor technology why do we still have different sensors for each sensing mode?  Why can’t we have one sensor with one part number that would be completely configurable?

BOS21M_Infographic_112917

Just think of the possibilities of a single part number that could be configured for any of the basic sensing modes of through-beam, retroreflective, background suppression and diffuse. To be able to go from 30 or more part numbers to one part would save OEM’s end users a tremendous amount of money in spares. To be able to change the sensing mode on the fly and download the required parameters for a changing process or format change.  Even the ability to teach the sensing switch points on the fly, change the hysteresis, have variable counter and time delays.  Just imagine the ability to get more advanced diagnostics like stress level (I would like that myself), lifetime, operating hours, LED power and so much more.

Obviously we could not have one sensor part number with all of the different light sources but to have a sensor with a light source that could be completely configurable would be phenomenal.  Just think of the applications.  Just think outside the box.  Just imagine the possibilities.  Let us know what your thoughts are.

To learn more about photoelectric sensors, visit www.balluff.com.

BGS Photo Sensors Are Here To Stay


Share

There is always debate of which sensing technology is better to use over a broad range of applications. And for the photo sensor world, BGS or background suppression is one of these. What many users don’t realize is that a background suppression photo sensor is what I will argue as a refined offshoot of the diffuse photo sensor principle, meaning the photo emitter and receiver is in a single housing and it uses the object or target as the reflective source. I say refined because it still uses a basic diffuse methodology, but has added technology that allows for a very specific response/detection zone based on the setting of the optics.

Continue reading “BGS Photo Sensors Are Here To Stay”