The Benefits of Mobile Handheld and Stationary Code Readers

Ensuring reliable traceability of products and assembly is critical in industries such as automotive, pharmaceuticals, and electronics. Code readers are essential in achieving this, with stationary and mobile handheld readers being the two most popular options. In what situations is it more appropriate to use one type over the other?

Stationary optical ID sensors

Stationary optical ID sensors offer simple and reliable code reading, making them an excellent option for ensuring traceability. They can read various codes, including barcodes, 2D codes, and DMC codes, and are permanently installed in the plant. Additionally, with their standardized automation and IT interfaces, the information readout can be passed on to the PLC or IT systems. Some variants also come with an IO-Link interface for extremely simple integration. The modern solution offers additional condition monitoring information, such as vibration, temperature, code quality, and operating time, making them a unique multi-talent within optical identification.

Portable code readers

Portable code readers provide maximum freedom of movement and can quickly and reliably read common 1D, 2D, and stacked barcodes on documents and directly on items. Various applications use them for controlling supply processes, production control, component tracking, quality control, and inventory. The wireless variants of handheld code readers with Bluetooth technology allow users to move around freely within a range of up to 100 meters around the base station. They also have a reliable read confirmation system via acoustic signal, LEDs, and a light spot projected onto the read code. Furthermore, the ergonomic design and highly visible laser marking frames ensure fatigue-free work.

Both stationary and mobile handheld barcode readers play an essential role in ensuring reliable traceability of products and assembly in various industries. Choosing the right type of barcode reader for your application is crucial to ensure optimal performance and efficiency. While stationary code readers are ideal for constant scanning in production lines, mobile handheld readers offer flexibility and reliability for various applications. Regardless of your choice, both devices offer simple operation and standardized automation and IT interfaces, making them essential tools for businesses that rely on efficient code reading.

QR Codes for Business vs Industry

QRCode
Example of a QR code for business use

In a previous post I discussed the different types of bar codes. Aside from the 1D bar codes that we see in the grocery store, the most common type of bar code today is the QR code.

The QR code was 1st designed for the automotive industry to track vehicles in the assembly process. The QR code system became popular outside the automotive industry due to its greater storage capacity compared to standard UPC bar codes. A QR code can have up to 7,089 ASCII characters and can read numeric, alphanumeric, byte/binary, and kanji. Businesses often use this type of QR code on vehicles and products for advertising. When a picture is taken with a cell phone, typically in a QR code reader app, the user will be taken to a website for more information.

Sharpshooter vision sensor for reading micro & QR codes
Sharpshooter vision sensor for reading micro & QR codes

Micro QR codes, on the other hand, have a limitation of 35 digits of numeric characters. These are usually seen in industrial applications. For example, they are seen on cam shafts, crankshafts, pistons, and circuit boards. An example of data that is often written to a micro QR code would be a serial number to track and trace through an assembly plant. An industrial vision sensor is typically needed to decipher micro QR codes.

ILoveBalluffQRCodes
An example of a QR code (left) vs a micro QR code (right)

For more information visit www.balluff.us.

Heading to Fabtech? Read this first.

Balluff has the opportunity to share some of the company’s proven Error-Proofing Techniques in a Seminar at Fabtech on November 14, 2011 in McCormick Place in Chicago, Illinois.  The session is segmented into two areas:

  1.   Automated/Robotic Weld Cell Process Improvement. We continue to see a great deal of need in this arena.  When the economy tanked in 2007/2008, many companies inside and outside of the Automotive Industry were on the edge and many good, talented people were let go.  In some cases, the people whose jobs were eliminated had many years of experience in maintenance and in manufacturing engineering.  When volumes of work came back, so did the problems associated with weld cell nesting, Poka-Yoke, clamp sensing because of loading impact, weld debris hostility and other issues related to peripheral sensing devices in weld cells; in many cases, without the experienced personnel to reduce time in consumption used to address a wide range of problems.  In this session, we will discuss and provide examples of proven techniques aimed squarely at these productivity and time-wasting problems that will return significant ROI for many customers.

Continue reading “Heading to Fabtech? Read this first.”