Reducing Planned/Unplanned Downtime with Vision Sensors; Part 3

Share/Bookmark

In parts one and two of this blog series, I described the typical packaging process, how actual runtime is defined, how vision is used to improve runtime, and how vision compares to the use of discrete sensors. In this last installment of this series, I will show some specific examples of how vision sensors have been used in packaging and show two case studies exemplifying the benefits customers achieved with the use of vision in their processes.

Continue reading “Reducing Planned/Unplanned Downtime with Vision Sensors; Part 3”

3 Common Applications for Discrete Output Inductive Proximity Sensors

Written by: Jeff Himes

Discrete (off/on) output inductive proximity sensors are used in a multitude of markets and industries.  The number of inductive sensors sold each year is in the millions.  With that many pieces being sold each year, one has to ask – how are all of these sensors being used?  Their uses break down into 3 common applications.

The 3 most common applications for discrete inductive proximity sensors are:

1.) Machine position verification

2.) Part position verification

3.) Part feature verification

Continue reading “3 Common Applications for Discrete Output Inductive Proximity Sensors”

I Can Do Quick Recipe Changes on the Fly, Can You?

Share/Bookmark

In my recent travels of the east coast from Boston to Tampa, customers have been looking for quality solutions to be able to run:

multiple products,

and multiple sizes,

and multiple form-factors,

all on one production line.

Two things about this seem to be in every application:

  1. Change-over needs to be simple for the operators.
  2. Management needs to see the cost/time savings, be it planned or unplanned downtime.

But how can I do multiple recipes or multiple jobs on one machine?  I have to reprogram/reposition sensors, move guide rails, swap out components, etc…

Continue reading “I Can Do Quick Recipe Changes on the Fly, Can You?”

The Killer Application for Capacitive Sensors

Written by: Bjoern Schaefer

Capacitive sensors certainly serve a niche within the group of proximity sensors.  This niche makes people overlook the most striking feature this technology provides us – remote detection of any liquid through glass or plastic walls.  On the first look that does not sound too exciting and I agree, as long as you have not been tasked to specify a sensor to accomplish this very job.

Continue reading “The Killer Application for Capacitive Sensors”

Automatic Size Change on a Budget – Part 1

Share/Bookmark

Increasingly, flexible manufacturing systems are being employed to allow the same equipment to produce a variety of different products, depending on demand.  The key to the economic success of these systems is keeping changeover time to a minimum.  Short changeover times mean more average production per hour and a smaller economical lot size.  The time spent changing over a machine is part of what is called planned downtime.   Planned downtime, if left unmanaged, can become a real sap on overall productivity.

Continue reading “Automatic Size Change on a Budget – Part 1”

Shedding the Light on Diffuse Mode Photoelectric Sensors

Share/Bookmark

Photoelectric sensors have solved numerous industrial applications over the years. There are basically three different sensing modes. The first is diffuse or reflex mode, next is retro reflective, which requires a reflector, and the third is through beam, transmitted or opposed. These field devices provide an excellent means of detecting target at a distance without contacting the object. All of the sensing modes are based on the sensor’s ability to detect a change in light reaching the sensor’s receiver. In this posting, we will review the diffuse or reflex photoelectric sensor.

Continue reading “Shedding the Light on Diffuse Mode Photoelectric Sensors”

IP67 Network I/O Islands: Why? Are there other options?

Share/Bookmark

Typical IP67 network topologies involve stand-alone I/O modules, providing 8 to 16 points of I/O per module.  In some applications multiple stand-alone modules could be mounted within inches of each other.  Thus was introduced the IP67 Network I/O Island, a modular IP67 I/O solution that allowed 8 to 60 plus I/O points to be connected to only one network node.  This solution provided initial costs savings by reducing the number of network nodes used in an application, but brought along some new problems.  One problem involved exceeding long sensor /actuator cordsets, with a centralized I/O solution remote sensors needed cordsets of 5, 10, or even 15 plus meters in length.  The second issue was cordset management; imagine tracing a suspect cordset to the network I/O island with 60 plus connectors hanging off of the front of the unit.

IP67 Network I/O Island
IP67 Network I/O Island

Continue reading “IP67 Network I/O Islands: Why? Are there other options?”

Intrinsically Safe Vs. Explosion Proof

Share/Bookmark

Industrial sensors are often called upon to be used in so-called “hazardous locations”.  A hazardous area is one where flammable gases and/or dusts are either present, or could potentially be present.

Typically, sensors used in such areas must be specifically approved and certified for use in these areas in order to prevent accidental ignition of any flammable gases or dusts that may be present.  The two most common protection methods are referred to as 1) explosion proof, and 2) intrinsically safe.

Continue reading “Intrinsically Safe Vs. Explosion Proof”

Reducing Planned/Unplanned Downtime with Vision Sensors; Part 2

Share/Bookmark

In part one of this blog series, I described the basic definition of the typical packaging process and how many processes runtime actually get broken down and defined. In this second part of vision sensors in packaging, I will specifically describe how vision is used to reduce planned and unplanned downtime and compare discrete versus the use of vision to achieve the same goals of error proofing a process and runtime improvement.

Continue reading “Reducing Planned/Unplanned Downtime with Vision Sensors; Part 2”

Inductive Sensor Protection and Positioning Made Easy – Use a Prox Mount

Written by: Jeff Himes

“Downtime” is never a good word in any manufacturing facility.  It means something has malfunctioned or broken, parts are not being made, production is reduced, and money is being lost.  In some cases this downtime may be caused by a physically damaged inductive proximity sensor.  If this failure mode is happening on a regular basis to the same location, it may be time to look at the advantages a prox mount can provide.

Continue reading “Inductive Sensor Protection and Positioning Made Easy – Use a Prox Mount”