Understanding IP Ratings

Ingress Protection (IP) ratings, developed by the International Electrotechnical Commission (IEC), are a standardized measure for manufacturers to specify and understand the level of protection that an enclosure offers against the intrusion of solid objects and liquids. It helps customers understand the suitability of a product for its intended use.

There are various levels of protection provided by IP ratings, and in this post, we’ll be discussing the differences between them.

Protection against solids

The first digit in an IP rating refers to the level of protection against solids – ranging from 0 to 6, with 0 being no protection and 6 providing protection against dust and other small particles. For example, a product with an IP rating of 4x provides protection against solid objects larger than 1mm in diameter.

Protection against liquids

The second digit in an IP rating refers to the level of protection against liquids – ranging from 0 to 9, with 0 being no protection and 9 providing protection against high temperatures, high pressure, water, and steam. A product with an IP rating of 7, for example, provides protection against immersion in water up to 1 meter for up to 30 minutes.

It is essential to note that higher IP ratings do not necessarily mean better protection. For instance, a product with an IP rating of 68 provides protection against dust and continuous immersion in water, making it suitable for underwater applications. However, it might not be suitable for areas with high humidity levels because it may not protect against condensation. Two common IP ratings are IP20, typical of control cabinet devices, and IP67, which is common in field devices.

Understanding the difference in IP ratings is essential for selecting the right product for its intended application. But it’s also important to follow appropriate guidelines to maintain a given device’s rating. This may include following specific mounting instructions, selecting the right connectors/cables, adhering to torque ratings, and more. One common example where we might see IP rating being negated would be a failure to use port plugs on unused ports on IO-Link master blocks.

In conclusion, the IP rating system is an important standard used to specify the level of protection against solids and liquids of a device. The first digit refers to the level of protection against solid objects, while the second digit refers to the level of protection against liquids. It is important to note that higher IP ratings do not necessarily mean better protection and understanding the difference between the ratings is crucial for selecting the right product for its intended application.

For a full description of the IEC IP ratings, including their testing conditions, please refer to IEC 60529.

The Benefits of Mobile Handheld and Stationary Code Readers

Ensuring reliable traceability of products and assembly is critical in industries such as automotive, pharmaceuticals, and electronics. Code readers are essential in achieving this, with stationary and mobile handheld readers being the two most popular options. In what situations is it more appropriate to use one type over the other?

Stationary optical ID sensors

Stationary optical ID sensors offer simple and reliable code reading, making them an excellent option for ensuring traceability. They can read various codes, including barcodes, 2D codes, and DMC codes, and are permanently installed in the plant. Additionally, with their standardized automation and IT interfaces, the information readout can be passed on to the PLC or IT systems. Some variants also come with an IO-Link interface for extremely simple integration. The modern solution offers additional condition monitoring information, such as vibration, temperature, code quality, and operating time, making them a unique multi-talent within optical identification.

Portable code readers

Portable code readers provide maximum freedom of movement and can quickly and reliably read common 1D, 2D, and stacked barcodes on documents and directly on items. Various applications use them for controlling supply processes, production control, component tracking, quality control, and inventory. The wireless variants of handheld code readers with Bluetooth technology allow users to move around freely within a range of up to 100 meters around the base station. They also have a reliable read confirmation system via acoustic signal, LEDs, and a light spot projected onto the read code. Furthermore, the ergonomic design and highly visible laser marking frames ensure fatigue-free work.

Both stationary and mobile handheld barcode readers play an essential role in ensuring reliable traceability of products and assembly in various industries. Choosing the right type of barcode reader for your application is crucial to ensure optimal performance and efficiency. While stationary code readers are ideal for constant scanning in production lines, mobile handheld readers offer flexibility and reliability for various applications. Regardless of your choice, both devices offer simple operation and standardized automation and IT interfaces, making them essential tools for businesses that rely on efficient code reading.

Improving Overall Equipment Effectiveness

Overall equipment effectiveness (OEE) is a critical metric for measuring the efficiency of manufacturing operations. It considers three factors – availability, performance, and quality – to determine the effective use of equipment.

Where do we focus to win the biggest improvements?

To improve OEE, it’s important to focus on these five key areas:

    1. Equipment maintenance: Ensuring equipment is well-maintained is critical to achieving high OEE. Regular inspections, preventive maintenance or, even better, “predictive maintenance,” and prompt repairs can help minimize downtime from unexpected breakdowns. Condition monitoring sensors and the data they generate can predict where failures may to occur so action can be taken to avoid such downtimes.
    2. Production planning: Effective production planning can help optimize production schedules, minimize set-up time, and reduce changeover time, as well as help increase equipment utilization and reduce downtime. Software solutions are available that provide operators with guidance and optimize changeovers between different set-ups or formats.
    3. Process optimization: Analyzing and optimizing production processes can help identify bottlenecks, reduce waste, and improve overall efficiency. This can involve implementing process improvements, such as reducing cycle times or optimizing material flow.
    4. Workforce training: A well-trained workforce can help minimize errors, reduce downtime, and improve overall quality. Providing employees with the necessary skills and training can also help increase productivity and equipment utilization. Operator guidance, including digital work instruction, which is available in a digital format, is increasingly familiar to the newer members of the workforce.
    5. Data analysis: Collecting and analyzing OEE and downtime data, and other key metrics can help identify areas for improvement and guide decision-making on where to focus. Implementing real-time monitoring and analysis can help detect issues early, well before a failure, and thus, minimize the impact on production.

By focusing on and ranking the areas outlined above, manufacturers can improve overall equipment effectiveness and achieve greater efficiency, productivity, and, most importantly, profitability.

Waterways: the Many Routes of Water Detection

 

Water is everywhere, in most things living and not, and the amount of this precious resource is always important. The simplest form of monitoring water is if it is there or not. In your body, you feel the effects of dehydration, in your car the motor overheats, and on your lawn, you see the dryness of the grass. What about your specialty machine or your assembly process? Water and other liquids are inherently clear so how do you see them, especially small amounts of it possibly stored in a tank or moving fast? Well, there are several correct answers to that question. Let’s dive into this slippery topic together, pun intended.

While mechanical float and flow switches have been around the longest, capacitive, photoelectric, and ultrasonic sensors are the most modern forms of electronic water detection. These three sensing technologies all have their strong points. Let’s cover a few comparisons that might help you find your path to the best solution for your application.

Capacitive sensors

Capacitive sensors are designed to detect nonferrous materials, but really anything that can break the capacitive field the sensor creates, including water, can do this. This technology allows for adjustment to the threshold of what it takes to break this field. These sensors are a great solution for through tank level detection and direct-contact sensing.

Ultrasonic sensors

Want to view your level from above? Ultrasonic sensors give you that view. They use sound to bounce off the media and return to the sensor, calculating the time it takes to measure distance. Their strong point is that they can overcome foam and can bounce off the water where light struggles when there is a large distance from the target to the receiver. Using the liquid from above, ultrasonics can monitor large tanks without contact.

Photoelectric sensors

Use photoelectric sensors when you’re looking at a solution for small scale. Now, this might require a site tube if you are monitoring the level on a large tank, however, if you want to detect small amounts of water or even bubbles within that water, photoelectric sensors are ideal. Using optical head remote photoelectric sensors tied to an amplifier, the detail and speed are unmatched. Photoelectric sensors are also great at detecting liquid levels on transparent bottles. In these applications with short distances, you need speed. Photoelectric sensors are as fast as light.

So, have you made up your mind yet? No matter which technology you choose, you will have a sensor that gives you accurate detail and digital outputs and is easy on the budget. Capacitive, ultrasonic, and photoelectric sensors provide all this and they grow with your application with adjustability.

Liquids are everywhere and not going away in manufacturing. They will continue to be an important resource for manufacturing.  Cherish them and ensure you account for every drop.

Using Vision Sensors to Conquer 1D and 2D Barcode Reading Applications

As many industries trend towards the adoption and use of two-dimensional barcodes and readers, the growth in popularity, acceptance of use, and positive track record of these 2D code readers offer a better way to track data. Vision-sensing code readers have many benefits, such as higher read rate performance, multi-directional code detection, simultaneous multiple codes reads, and more information storage.

While traditional red line laser scanners or cameras with decoding and positioning software are commonly used to read barcodes, there are three main types of barcodes: 1D, 2D, and QR codes. Each type has different attributes and ways of reading.

1D barcodes are the traditional ladder line barcodes typically seen in grocery stores and on merchandise and packaging. On the other hand, 2D Data Matrix codes are smaller than 1D barcodes but can hold quite a bit more information with built-in redundancy in case of scratches or defacement. QR codes, which were initially developed for the automotive industry, can hold even more information than Data Matrix codes, were initially developed for the automotive industry to track parts during vehicle manufacturing and are now widely used in business and advertising.

There are various types of vision sensors for reading different types of barcodes. QR codes are often used in business and advertising, while micro QR codes are typically seen in industrial applications such as camshafts, crankshafts, pistons, and circuit boards. Deciphering micro QR codes typically require an industrial sensor.

The need to easily track products and collect information about their whereabouts has been a long-standing problem in manufacturing and industrial automation. While one-dimensional barcodes have been the traditional solution, advances in one-dimensional code reading continue to improve. New hardware, code readers, and symbology, however, have made an emergence, and new image-based scanners are becoming a popular alternative for data capture solutions.

In summary, vision sensors are becoming increasingly important in 1D and 2D barcode reading applications due to their higher read rate performance, multi-directional code detection, simultaneous multiple codes read, and more information storage. As the need for tracking products and collecting information about their whereabouts continues to grow, industries will benefit from the use of vision sensors to improve efficiency and accuracy.

Automated Welding With IO-Link

IO-Link technologies have been a game-changer for the welding industry. With the advent of automation, the demand for increasingly sophisticated and intelligent technologies has increased. IO-Link technologies have risen to meet this demand. Here I explain the concepts and benefits of I-O Link technologies and how they integrate into automated welding applications.

What are IO-Link technologies?

IO-Link technologies refer to an advanced communication protocol used in industrial automation. The technology allows data transfer, i.e., the status of sensors, actuators, and other devices through a one-point connection between the control system and individual devices. Also, it enables devices to communicate among themselves quickly and efficiently. IO-Link technologies provide real-time communication, enabling continuous monitoring of devices to ensure optimal performance.

Benefits of IO-Link technologies

    • Enhanced data communication: IO-Link technologies can transfer data between the control system and sensors or devices. This communication creates an open and transparent network of information, reflecting the real-time status of equipment and allowing for increased reliability and reduced downtime.
    • Cost-efficiency: IO-Link technologies do not require complicated wiring and can significantly reduce material costs compared to traditional hardwired solutions. Additionally, maintenance is easier and more efficient with communication between devices, and there is less need for multiple maintenance employees to manage equipment.
    • Flexibility: With IO-Link technologies, the control system can control and monitor devices even when not attached to specific operator workstations. It enables one control system to manage thousands of devices without needing to rewrite programming to accommodate different machine types.
    • Real-time monitoring: IO-Link technologies provide real-time monitoring of devices, allowing control systems to monitor failures before they occur, making it easier for maintenance teams to manage the shop floor.

How are IO-Link technologies used in automated welding applications?

Automated welding applications have increased efficiencies and continuity in processes, and IO-Link technologies have accelerated these processes further. Automated welding applications have different stages, and each step requires real-time monitoring to ensure the process is efficient and effective. IO-Link technologies have been integrated into various parts of the automated welding process, some of which include:

    1. Positioning and alignment: The welding process starts with positioning and aligning materials such as beams, plates, and pipes. IO-Link sensors can detect the height and gap position of the material before the welding process begins. The sensor sends positional data to the control system as a feedback loop, which then adjusts the positioning system using actuators to ensure optimal weld quality.
    2. Welding arc monitoring: The welding arc monitoring system is another critical application for IO-Link technologies. Monitoring the arc ensures optimal weld quality and runs with reduced interruptions. IO-Link temperature sensors attached to the welding tip help control and adjust the temperature required to melt and flow the metal, ensuring that the welding arc works optimally.
    3. Power supply calibration: IO-Link technologies are essential in calibrating the power output of welding supplies, ensuring consistent quality in the welding process. Detectors attached to the power supply record the energy usage, power output and voltage levels, allowing the control system to adjust as necessary.
    4. Real-time monitoring and alerting: Real-time monitoring and alerting capabilities provided by IO-Link technologies help to reduce downtime where machine health is at risk. The sensors monitor the welding process, determining if there are any deviations from the set parameters. They then communicate the process condition to the control system, dispatching alerts to maintenance teams if an issue arises.

Using IO-Link technologies in automated welding applications has revolutionized the welding industry, providing real-time communication, enhanced data transfer, flexibility, and real-time monitoring capabilities required for reliable processes. IO-Link technologies have been integrated at various stages of automated welding, including positioning and alignment, welding arc monitoring, power supply calibration, and real-time monitoring and alerting. There is no doubt that the future of automated welding is bright. With IO-Link technologies, the possibilities are endless, forging ahead to provide more intelligent, efficient, and reliable welding applications.

Future Proofing Weld Cell Operations

Weld cells are known for their harsh environments, with high temperatures, electromagnetic field disruptions, and weld spatter debris all contributing to the reduced lifespan of standard sensors. However, there are ways to address this issue and minimize downtime, headaches, and costs associated with sensor replacement.

Sensor selection

Choosing the appropriate sensor for the environment may be the answer to ensuring optimal uptime for a weld cell environment. If current practices are consistently failing, here are some things to consider:

    • Is there excessive weld spatter on the sensor?
    • Is the sensor physically damaged?
    • Is there a better mounting solution for the sensor?

For example, sensors or mounts with coatings can help protect against weld spatter accumulation while specialized sensors can withstand environmental conditions, such as high temperatures and electromagnet interferences. To protect from physical damage, a steel-faced sensor may be an ideal solution for increased durability. Identifying the root cause of the current problem is critical in this process, and informed decisions can be made to improve the process for the future.

Sensor protection

In addition to selecting the correct sensor, further steps can be taken to maximize the potential of the weld cell. The sections below cover some common solutions for increasing sensor lifetime, including sensor mounts and bunkers, and entirely removing the sensor from the environment.

Mounting and bunkering

Sensor mounting enables the positioning of the sensor, allowing for alignment correction and the possibility of moving the sensor to a safer position. Some examples of standard mounting options are shown in image 1. Bunkering is generally the better option for a welding environment, with material thickness and robust metal construction protecting the sensor from physical damage as displayed on the right in image 2. The standard mounts on the left are made of either plastic or aluminum. Selecting a mounting or bunkering solution with weld spatter-resistant coating can further protect the sensor and mounting hardware from weld spatter buildup and fully maximize the system’s lifetime.

Image 1
Image 2

Plunger probes

Using a plunger probe, which actuates along a spring, involves entirely removing the sensor from the environment. As a part comes into contact with the probe and pushes it into the spring, an embedded inductive sensor reads when the probe enters its field of vision, allowing for part validation while fully eliminating sensor hazards. This is a great solution in cases where temperatures are too hot for even a coated sensor or the coated sensor is failing due to long-term, high-temperature exposure. This mechanical solution also allows for physical contact but eliminates the physical damage that would occur to a normal sensor over time.

The solutions mentioned above are suggestions to keep in mind when accessing the current weld cell. It is important to identify any noticeable, repeatable failures and take measures to prevent them. Implementing these measures will minimize downtime and extend the lifetime of the sensor.

Leave a comment for a follow-up post if you’d like to learn about networking and connectivity in weld cells.

Magnetic Field Positioning Systems for Reliable, Accurate and Repeatable Absolute Position Feedback

Magnetic field positioning systems are increasingly popular due to their ability to provide reliable, accurate, and repeatable absolute position feedback.

These systems use magnetic field sensors to get a larger range of feedback across a pneumatic cylinder – a great alternative to traditional cylinder prox switches that may not work well in certain applications. They also allow for continuous monitoring of piston position in tight spaces, providing feedback in the form of analog voltage, current output, and IO-Link interface. And in many cases, these systems can replace the need for a linear transducer, making them a cost-effective solution for many industries.

One of the key benefits of magnetic field positioning systems is their versatility. They can be used in a wide range of industrial applications, such as:

    • Ultrasonic welding to validate set height with position feedback
    • Nut welding to verify set height with position feedback
    • Dispensing
    • Gripping for position feedback for different parts
    • Liner position indicators

While using these sensors greatly improves productivity in areas where prox sensors cannot provide the reliability needed, when selecting the magnetic field position system, it is important to consider the application requirements. The accuracy and feedback speed, for example, may vary depending on the application.

Magnetic field position systems are also available in different lengths. If the standard length does not meet requirements, you can choose a non-contact type that can be mounted on a slide with a magnetic trigger.

Overall, magnetic field positioning systems are an excellent choice for any industry that requires reliable, accurate, and repeatable absolution position feedback. With their versatility and flexibility, they are sure to improve productivity and efficiency in a wide range of applications.

Focusing on Machine Safety

Machine safety refers to the measures taken to ensure the safety of operators, workers, and other individuals who may come into contact with or work in the vicinity of machinery. Safety categories and performance levels are two important concepts to evaluate and design safety systems for machines. A risk assessment is a process to identify, evaluate, and prioritize potential hazards and risks associated with a particular activity, process, or system. The goal of a risk assessment is to identify potential hazards and risks and to take steps to prevent or mitigate those risks. The hierarchy of controls can determine the best way to mitigate or eliminate risk. We can use this hierarchy, including elimination, substitution, engineering, and administrative controls, and personal protective equipment (PPE), to properly mitigate risk. Our focus here is on engineering controls and how they relate to categories and performance levels.

Performance level

The performance level (PL) of machine safety components is a measure of the reliability and effectiveness of safety systems. Defined as EN ISO 13849-1 standard by the International Organization for Standardization (ISO), it is based on the probability of a safety system failing to perform its intended function. Performance levels are designated by the letters “a” through “e” with PLa being the lowest level of safety and PLe being the highest. Assessing the safety function of the machinery and evaluating the likelihood of a dangerous failure occurring determines the performance level.

Four levels of protection

The categories of machine safety components refer to the four levels of protection required to ensure the safe operation of machinery, as defined by the ISO. Figure 1 below shows how the measured risk determines the performance level and category of circuit performance.

    • Category 1: The occurrence of a fault can lead to loss of the safety function. Single channel safety circuit.
    • Category 2: The occurrence of a fault can lead to loss of the safety function between checks. Single channel safety circuit with monitoring.
    • Category 3: When a single fault occurs, the safety function is always performed. Some faults, but not all, can be detected, but the accumulation of those undetected faults can lead to the loss of the safety function. This category can be implemented using control reliable devices in a dual channel redundant safety circuit that includes monitoring.
    • Category 4: When a fault occurs, the safety function is always performed. Faults will be detected in time to prevent a loss of the safety function and is implemented using control reliable devices in a dual channel redundant safety circuit that includes monitoring.

Using control reliable devices is crucial in Category 3 and 4 safety circuits. One example of a control reliable device is a safety relay that mechanically interlocks the control contacts to the auxiliary contacts. Being mechanically interlocked means when the relay changes states the auxiliary contact will also changes states. Another example of a control reliable device is a safety PLC. A standard PLC is not rated to control safety functions because it is not control reliable and a malfunction could lead to the loss of a safety function.

 

The selection of the appropriate category and performance level for devices used to mitigate a risk in a machine is crucial for ensuring the safety of operators and other individuals. While it is important to note that the purpose of this blog is to provide information, it is not enough to qualify individuals to design or test safety systems. In summary, the category of machine safety defines the level of protection required for safe operation, while the performance level measures the reliability and effectiveness of safety systems.

Now let us go automate with a focus on safety!