Capture vs Control – The Hidden Value of True IIoT Solutions

A few months ago a customer and I met to discuss their Industry 4.0 & IIoT pilot project.  We discussed technology options and ways to collect data from the existing manufacturing process.  Options like reading the data directly from the PLC or setting up an OPC service to request machine data were discussed; however these weren’t preferable as it required modifying the existing PLC code to make the solution effective.  “What I really want is the ability to capture the data from the devices directly and not impact the control of my existing automation equipment.”  Whether his reason was because of machine warranty conflicts or the old adage, “don’t fix what ain’t broke” the general opinion makes sense.

Capture versus Control.

This concept really stuck with me months after our visit that day.  This is really one of the core demands we have from the data generation part of the IIoT equation; how can we get information without negatively impacting our automated production systems?  This is where the convergence of the operational OT and network IT becomes critical.  I’ve now had to build an IT understanding of the fundamentals of how data is transferred in Ethernet; and build an understanding of new-to-me data protocols like JSON (JavaScript Object Notation) and MQTT.  The value of these protocols allows for a direct request from the device-that-has-the-data to the device-that-needs-the-data without a middleman.  These IT based protocols eliminate the need for a control-based data-transport solution!

Blog-WillH_drawing_FINAL

So then truly connected IIoT automation solutions that are “Ready for IIoT” need to support this basic concept of “Capture versus Control.”  We have a strong portfolio of products with Industrial Internet of Things capabilities, check them out at www.balluff.com.

Posted in All posts, Industrial Internet of Things | Tagged , , , , | 1 Comment

Solve Difficult Sensing Applications with Ultrasonic Technology

When reviewing or approaching an application, we all know that the correct sensor technology plays a key role in reliable detection of production parts or even machine positioning. In many cases, application engineers choose photoelectric sensors Image1as their go-to solution, as they seem more common and familiar. Photoelectric sensors are solid performers in a variety of applications, but they can run into limitations under certain conditions. In these circumstances, considering an ultrasonic sensor could provide a solid solution.

An ultrasonic sensor operates by emitting ultra-high-frequency sound waves. The sensor monitors the distance to the target by measuring the elapsed time between the emitted and returned sound waves.

Ultrasonic sensors are not affected by color, like photoelectric sensors sometimes are. Therefore, if the target is black in color or transparent, the ultrasonic sensor can still provide a reliable detection output where the photoelectric sensor may not. I was recently approached with an application where a Image2customer needed to detect a few features on a metal angle iron. The customer was using a laser photoelectric sensor with analog feedback measurement, however the results were not consistent or repeatable as the laser would simply pick up every imperfection that was present on the angle iron. This is where the ultrasonic sensors came in, providing a larger detection range that was unaffected by surface characteristics of the irregular target. This provided a much more stable output signal, allowing the customer to reliably detect and error-proof the angle iron application. With the customer switching to ultrasonic sensors in this particular application, they now have better quality control and reduced downtime.
Image3

So when approaching any application, keep in mind that there is a variety of sensor technologies available, and some will provide better results than others in a given situation. Ultrasonic sensors are indeed an excellent choice when applied correctly. They can measure fill level, stack height, web sag, or simply monitor the presence of a target or object. They can also perform reliably in foggy or dusty areas where optical-based technologies sometimes fall short.

For more information on ultrasonic and photoelectric sensors visit www.balluff.com.

Posted in All posts, Object Detection Sensors, Ultrasonic Sensors | Tagged , , , | Leave a comment

Absolute Position for Incremental Systems

In linear motion applications, it is often desirable to eliminate the need to make a homing run to re-acquire the reference position for an incremental linear encoder. The homing routine may need to be eliminated to save processing time, or it may not be practical…for example, if the machine can’t be moved following a loss of power due to some mechanical consideration. Additionally, to reduce costs and simplify system design, it would also be helpful to eliminate the need for home and limit switches.

Absolute linear encoders offer an upgrade path, however they also require changes on the controller side to more costly and difficult-to-implement serial interfaces like Biss C, EnDat®, SSI, and others.  These obstacles have limited the use of absolute encoders in the majority of linear motion applications.

Recently, an innovative encoder interface called Absolute Quadrature brings absolute encoder functionality to systems with controllers designed to accept a simple and commonly used A-B quadrature incremental interface.

This demonstration video from In-Position Technologies highlights the functionality and advantages of upgrading incremental positioning systems with an Absolute Quadrature encoder.

To learn more about our Absolute Quadrature encoder, visit www.balluff.com.

Posted in All posts, Linear Position and Distance Measurement | Tagged , , , | 2 Comments

How to Balance the IIoT Success Equation

What are the key components to being successful when implementing Industrial IoT?  There are three major components to consider when beginning your pilot project for Industry 4.0: Strategy, Data & Action.  With a clear understanding of each of these components, successful implementations are closer than you think.

Strategy:  What is your plan? What do you need to know?  Who needs to know what?  How do we enable people to make the right decisions?  What standards will we follow?  How often do we need the data?  What data don’t we need?

Data Generation:  Devices need to generate cyclic data giving insight into the process and warning/event data to give insight into issues.  Devices should support protocols that allow requesting data without impacting the control system and structured in a way that’s logical and easy to manipulate.

Data Management:  How are we going to handle our data?  What structure does it need to be in?  Do we need internal and external access to the data?  What security requirements do we need to consider?  Which users will need the data?  Where is the data coming from?  How much data are we talking about?

Data Analytics:  Insight, Big Data, Predictive Analytics, etc.  These insights from an industrial point of view should truly drive productivity for every user.  Predictive Analytics should help us know when and where to perform maintenance on equipment and dramatically reduce downtime in the plant.

Action:  The key component of any IIoT Success.  Without daily decisions based on the strategy by every employee, failure is assured.  Supply chain needs to know that we are interested in not just the cheapest replacement component, but one that can help us generate data to improve our analytic capabilities.  Maintenance needs to be taking action on Predictive outputs and move from randomly fighting fires to purposefully preventing downtime all together.

Blog_WillH_Infograph_IIoT_FINAL

Strategy + (Data Generation + Data Management + Data Analytics) + Action = IIoT Success

We have a strong portfolio of automation devices that enable data generation for IIoT applications, check them out at www.balluff.com.

Posted in All posts, Industrial Internet of Things | Tagged , , , , , , | 1 Comment

Precision Pneumatic Cylinder Sensing

When referring to pneumatic cylinders, we are seeing a need for reduced cylinder and sensor sizes. This is becoming a requirement in many medical, semiconductor, packaging, and machine tool applications due to space constraints and where low mass is needed throughout the assembly process.

These miniature cylinder applications are typically implemented into light-to-medium duty applications with lower air pressures with the main focus being precision sensing Image 2with maximum repeatability. For example, in many semiconductor applications, the details
and tolerances are much tighter and more controlled than say, a muffler manufacturer that uses much more robust equipment with slower cycle times. In some cases, manufacturing facilities will have several smaller sub-assemblies that feed into the main assembly line. These sub-assemblies can have several miniature pneumatic cylinders as part of the process. Another key advantage miniature cylinders offer is quieter operation due to lower air pressures, making the work place much safer for the machine operators and maintenance technicians. With projected growth in medical and semiconductor markets, there will certainly be a major need for miniature assembly processes including cylinders, solenoids, and actuators used with miniature sensors.

One commonality with miniature cylinders is they require the reliable wear-free position detection available from magnetic field sensors. These sensors are miniature in size, however Image 1offer the same reliable technology as the full-size sensors commonly used in larger assemblies. Miniature magnetic field sensors play a key role as speed, precision, and weight all come into play. The sensors are integrated into these small assemblies with the same importance as the cylinder itself. Highly accurate switching points with high precision and high repeatability are mandatory requirements for such assembly processes.

To learn more about miniature magnetic field sensors visit www.balluff.com.

Posted in All posts, Magnetic Field Sensors | Tagged , , , , , , , | Leave a comment

Importance of Directional Sensitivity in Magnetic Field Sensor Applications

Figure 1

Figure 1: Mounting of a standard T or C-slot magnetic field sensor

When using a T-slot or C-slot (Figure 1) magnetic field sensor to determine positioning in a pneumatic cylinder, the sensing face is oriented directly toward the magnet inside of the cylinder. But on the other side of the coin, how
susceptible is the sensor to magnetic interference of some outside source that may contact the sensor from other angles?

 

Figure 2

Figure 2: The angle between the AMR Bridge current and the applied magnetization will determine the quality of the sensor output signal.

The behavior of anisotropic magnetoresistive sensing devices can vary under certain conditions. Most critically, the magnetoresistive effect can be extremely angular dependent. The angle between the AMR Bridge current and the applied magnetization on the device determines how much the resistance will change. This is depicted in Figure 2, while Figure 3 shows a demonstration of how the output can change as the angle changes.

Figure 3

Figure 3: The change in resistance of the AMR Bridge shown as a function of the angle between magnetizing current and the magnetization.

When used in a standard application with only the sensor face looking at the magnet, this is not an issue as the AMR device is angled to allow for ideal operating conditions. But in the event that the device senses a magnetic field from someplace other than directly in front of it, double switching conditions and generally unpredictable behaviors can be seen.

At this point, the question becomes “how can we minimize the risk of the sensor’s susceptibility to unintended magnetic fields?” The answer to this comes in the directional sensitivity of the AMR Bridge. AMR devices can be either unidirectional, bidirectional, or omnidirectional.

The unidirectional sensor is designed to only be activated by one of the poles, and the output turns off when the sensor is removed.

Bidirectional sensors are activated by a pole like the unidirectional is, however the output must be turned off by using the opposing magnetic pole.

Lastly, the omnidirectional sensor is capable of being activated by either pole and turns off when the magnet is removed from the sensing zone.

Since the omnidirectional device is designed to be able to detect a magnetic field coming from multiple poles and directions, it has a much more consistent response when in an application that could be prone to encountering a magnetic field that isn’t directly in front of the sensing face.

There are a handful of factors that determine directional sensitivity of an AMR chip; however, the largest comes from the handling of the resistance bridge offset.

Figure 4

Figure 4: The transfer curve of the magnetic field vs. output voltage (resistance change across the bridge) shows an offset from the origin that must be accounted for. How this is dealt with plays a major role in determining directional sensitivity of AMR devices

The offset is simply the voltage difference when no magnetic field is present. This is a problem that arises due to the transfer characteristics (Figure 4) of the AMR sensor and is a common property on the datasheet of an AMR chip. This offset is usually handled within the AMR IC, which means that the directional sensitivity is pre-determined when you buy the chip. However, there are some AMR manufacturers that produce “adjustable offset” devices, that allow the user to determine the directional behavior.

While unidirectional and bidirectional devices have their place in certain applications, it remains clear that an omnidirectional sensor can have the most angular versatility, which is critical when there’s a possibility of magnetic fields surrounding the device. While many anisotropic magnetoresistive sensors do have built in stray field concentration, it is still a good idea to evaluate the needs for your application and make an informed decision in regards to directional sensitivity.

For more information visit www.balluff.us.

Posted in All posts, Magnetic Field Sensors, Object Detection Sensors | Tagged , , , , , , | Leave a comment

For RFID Applications, Think Throughput

A common request from many engineers I talk to is the need for a “faster” RFID read/write system.  Usually, this is due to the fact they are increasing their overall line speed and decreasing the amount of time that a work in process item dwells in one station.  This is a good thing.  We all want to make more widgets faster. However, in addition to increasing the number of widgets that come off the production line and the rate at which they come off, the demand for quality has increased significantly. This is also a good thing. This certainly leads to a win-win between the manufacturer and the consumer. As the demand for quality increases so does the amount of data. Statistical process control, lineage data, build data, etc. are represented by large amounts of data. So the tag has to have enough memory and the reader has to have enough speed to keep up with the process. The amount of data transferred over a period of time is called throughput.

In RFID readers/writers, throughput is usually represented as bytes or kilobytes of data per second or milliseconds. The read/write speeds of all RFID systems are related to the amount of data being read or written to the tag. So, if high throughput is a requirement, a feature to look for in the reader/writer is the buffer size. I don’t want to get too deep into the technical weeds of data transfer, bit rates, baud rates, etc. so I will explain it from a marketing guy’s perspective. Think of an RFID system as a data delivery system. In this delivery system an imaginary tractor-trailer is what delivers the data from the reader to the tag and the tag to the reader. The trailer represents the aforementioned buffer.  The trailer or buffer can hold a specified amount of data, 32Bytes, 64Bytes and so on. This is determined by the manufacturer of the system. Semi trucks_blogTherefore, there may be two systems that operate at the same speed, but have a totally different throughput.  Back to the tractor-trailer example, there can be two semi’s going down the road at the same speed but one has a trailer that is half the size of the other and can only carry half as much product(data in this case). So in order to transfer the same amount of data, the half-size trailer has to make two trips (cycles) whereas the larger trailer makes only one. In a case where the amount of data that needs to be transferred is multiple thousands of bytes or kilobytes, that buffer size becomes more important because the more cycles or trips that have to be completed the slower the transfer.

Ultimately, speed is a relative term in the world of moving data from one point to another. In order to future-proof your production line, look a little deeper into the features of the system to make sure you’re investing in technology that is not only fast, but fast and moves a lot of data.

For more information, visit www.balluff.com.

 

Posted in All posts, Industrial Identification, Industrial RFID Systems | Tagged , , , | Leave a comment

Position and Level Measurement for Clean Energy

A few years ago, a new gas station opened in our neighborhood situated at the edge of town.  Some new customers started showing up with camouflage painted cars, especially early in the morning or late at night. They always seemed to be a little shy, never leaving the cars alone and sometimes, while grabbing a cup of coffee, they would even cover their cars with a tarp. It became obvious that this gas station was also used as a base for the test fleet of some major car manufacturer, and even after years, it is still exciting to get a glimpse of a new prototype. Working for the international Balluff energy team, it was even more exciting to see that a new hydrogen fuel dispenser had been installed at this gas station a few months ago.

Hydrogen seems to be one of the promising possibilities to store surplus energy from wind or solar power and to realize climate friendly mobility. But the processing and transportation of hydrogen poses new challenges for the equipment with regard to pressure, temperature and material properties.

One of the  possibilities for position and level measurement in such a harsh environment is magnetostrictive measurement systems.

This type of transducer comprises current position information transferred via magnetic fields contactless through the housing wall to the internal sensor element. The operation principle enables the installation in hermetically sealed rod/housing against the process medium.

Image1

Another point to note is the presence of a possibly hazardous atmosphere that can be ignited by electric sparks or hot surfaces. Therefore the measurement systems installed need to be designed in accordance with applying explosion protection regulations.

Image2

Considering the above mentioned framework conditions, specific part testing and verification is necessary within the development process as well as in series production. In addition the necessary approvals and certificates have to be provided on an international scale.

Image3

For more information about the future market of Clean Energy, the measurement systems in use and the cooperation during the R&D process, visit the full report from Linde AG Austria (AUTlook 4/2017).

Posted in All posts | Tagged , , | Leave a comment

External Position Feedback for Hydraulic Cylinders

The classic linear position feedback solution for hydraulic cylinders is the rod-style magnetostrictive sensor installed from the back end of the cylinder. The cylinder rod is gun-drilled to accept the length of the sensor probe, and a target magnet is installed on the face of the piston. A hydraulic port on the end cap provides installation access to thread-in the pressure-rated sensor tube. This type of installation carries several advantages but also some potential disadvantages depending on the application.

EDITED Image_HF

Position Sensor Mounted Internally in a Hydraulic Cylinder
(Image credit: Cowan Dynamics)

Advantages of in-cylinder sensor mounting include:

  • Simplicity. The cylinder manufacturer “preps” the cylinder for the sensor and may install it as an extra-cost option.
  • Ruggedness. The sensor element is protected inside the cylinder. Only the electronics head is exposed to the rigors of the industrial environment.
  • Compactness. The sensor is contained inside the cylinder, so it does not add to the cross-sectional area occupied by the cylinder.
  • Direct Position Measurement. Because the target magnet is mounted on the piston, the sensor is directly monitoring the motion of the cylinder without any interposing linkages that might introduce some position error, especially in highly dynamic, high-acceleration / deceleration applications.

Potential disadvantages of in-cylinder sensor mounting may include:

  • Sensor Cost. Cylinder-mounted position sensors require a rugged, fully-sealed stainless-steel sensor probe to withstand the dynamic pressures inside a cylinder. This adds some manufacturing cost.
  • Cylinder Cost. The procedure of gun-drilling a cylinder rod consumes machine time and depletes tooling, adding manufacturing cost over a standard cylinder. Refer to additional comments under Small Cylinder Bores / Rods below.
  • Cylinder Delivery Time. Prepping a new cylinder for a sensor adds manufacturing time due to additional processing steps, some of which may be outsourced by the cylinder manufacturer, increasing overall shipping and handling time.
  • Overall Installed Length. Because the sensor electronics and cabling protrude from the back end of the cylinder, this adds to the overall length of the installed cylinder. Refer to additional comments under Small Cylinder Bores / Rods below.
  • Service Access. In case sensor repair is required, there must be sufficient clearance or access behind the cylinder to pull out the full length of the sensor probe.
  • Small Cylinder Bores / Rods. Some cylinder bores and rod diameters are too small to allow for gun-drilling a hole large enough to install the ~10.2 mm diameter sensor tube and allow for proper fluid flow around it. In tie rod cylinders, the distance between the rod nuts may be too small to allow the flange of the position sensor to fully seat against the O-ring. In these cases, a mounting boss must be provided to move the mounting position back past the tie rods. This adds cost as well as increases overall installed length.

Edited Image 2

In cases where the advantages of in-cylinder mounting are outweighed or rendered impractical by some of the disadvantages, an externally-mounted position sensor can be considered. The list of advantages and disadvantages looks similar, but reversed.

FINAL Profile transducer - hydraulic frame piercing press_HF

Position Sensor Mounted Externally on Hydraulically-Actuated Equipment

Advantages of external sensor mounting include:

  • Sensor Cost. Externally-mounted magnetostrictive position sensors are typically made from an aluminum extrusion and die-cast end caps with gaskets, saving cost compared to all-stainless-steel welded and pressure-rated construction.
  • Cylinder Cost. The cylinder can be a standard type with no special machining work needed to accommodate installation of the sensor.
  • Cylinder Delivery Time. Since no additional machine work is needed, the cylinder manufacturer can deliver within their standard lead time for standard cylinders.
  • Overall Installed Length. Typically, the external sensor is mounted in parallel to the cylinder, so overall length is not increased.
  • Service Access. The externally-mounted sensor is easily accessible for service by simply unbolting its mounting brackets and pulling it off the equipment.

Disadvantages of external sensor mounting may include:

  • Complexity. The machine designer or end user must provide the means to mount the sensor brackets and the means to position a floating magnet target over the sensor housing. Alternatively, a captive sliding magnet target may be used with a length of operating rod and swivel attachment hardware.
  • Exposure to Damage. Unless guarded or installed in a protected area, an externally mounted position sensor is subject to being mechanically damaged.
  • Space Requirements. There must be enough empty space around the cylinder or on the machine to accommodate the sensor housing and operating envelope of the moving magnetic target.
  • Indirect Position Measurement. Any time a floating target magnet is mounted to a bracket, there is the potential for position error due to the bracket getting bent, flexing under acceleration / deceleration, mounting bolts loosening, etc. In the case of operating rods for captive sliding magnets, there will be some mechanical take-up in the swivel joints upon change of direction, adding to position hysteresis. There is also the potential for rod flexing under heavy acceleration / deceleration – particularly when the rod is acting under compression vs. tension. Take note of the amount of sliding friction of the captive magnet on the sensor rails; some sensor magnet designs offer high friction and stiff resistance to movement that can increase operating rod deflection and resultant position error.

In conclusion, be sure to consider all aspects of an application requiring cylinder position feedback and choose the approach that maximizes the most important advantages and eliminates or minimizes any potential disadvantages. It may be that an externally-mounted position sensor will solve some of the challenges being faced with implementing a traditional in-cylinder application.

For more information about internally- and externally-mounted cylinder position sensors, visit www.balluff.com.

Posted in All posts, Linear Position and Distance Measurement | Tagged , , , , , | Leave a comment

Ensure Optimum Performance In Hostile Welding Cell Environments

The image above demonstrates the severity of weld cell hostilities.

Roughly four sensing-related processes occur in a welding cell with regards to parts that are to be joined by MIG, TIG and resistance welding by specialized robotic /automated equipment:

  1. Nesting…usually, inductive proximity sensors with special Weld Field Resistance properties and hopefully, heavy duty mechanical properties (coatings to resist weld debris accumulation, hardened faces to resist parts loading impact and well-guarded cabling) are used to validate the presence of properly seated or “nested” metal components to ensure perfectly assembled products for end customers.
  2. Poke-Yoke Sensing (Feature Validation)…tabs, holes, flanges and other essential details are generally confirmed by photoelectric, inductive proximity or electromechanical sensing devices.
  3. Pneumatic and Hydraulic cylinder clamping indication is vital for proper positioning before the welding occurs. Improper clamping before welding can lead to finished goods that are out of tolerance and ultimately leads to scrap, a costly item in an already profit-tight, volume dependent business.
  4. Several MIB’s covered in weld debris

    Connectivity…all peripheral sensing devices mentioned above are ultimately wired back to the controls architecture of the welding apparatus, by means of junction boxes, passive MIB’s (multiport interface boxes) or bus networked systems. It is important to mention that all of these components and more (valve banks, manifolds, etc.) and must be protected to ensure optimum performance against the extremely hostile rigors of the weld process.

Magnetoresistive (MR), and Giant Magnetoresistive (GMR) sensing technologies provide some very positive attributes in welding cell environments in that they provide exceptionally accurate switching points, have form factors that adapt to all popular “C” slot, “T” slot, band mount, tie rod, trapezoid and cylindrical pneumatic cylinder body shapes regardless of manufacturer. One model family combines two separate sensing elements tied to a common connector, eliminating one wire back to the host control. One or two separate cylinders can be controlled from one set if only one sensor is required for position sensing.

Cylinder and sensor under attack.

Unlike reed switches that are very inexpensive (up front purchase price; these generally come from cylinder manufacturers attached to their products) but are prone to premature failure.  Hall Effect switches are solid state, yet generally have their own set of weaknesses such as a tendency to drift over time and are generally not short circuit protected or reverse polarity protected, something to consider when a performance-oriented cylinder sensing device is desired.  VERY GOOD MR and GMR cylinder position sensors are guaranteed for lifetime performance, something of significance as well when unparalleled performance is expected in high production welding operations.

But!!!!! Yes, there is indeed a caveat in that aluminum bodied cylinders (they must be aluminum in order for its piston-attached magnet must permit magnetic gauss to pass through the non-ferrous cylinder body in order to be detected by the sensor to recognize position) are prone to weld hostility as well. And connection wires on ALL of these devices are prone to welding hostilities such as weld spatter (especially MIG or Resistance welding), heat, over flex, cable cuts made by sharp metal components and impact from direct parts impact. Some inexpensive, effective, off-the-shelf protective silicone cable cover tubing, self-fusing Weld Repel Wrap and silicone sheet material cut to fit particular protective needs go far in protecting all of these components and guarantees positive sensor performance, machine up-time and significantly reduces nuisance maintenance issues.

To learn more about high durability solutions visit www.balluff.com.

Posted in All posts, Magnetic Field Sensors, Object Detection Sensors | Tagged , , , , , , , , , , , , , , , | Leave a comment