Tool Identification in Metalworking

With the start of industry 3.0 (the computer based automation of production) the users of machine tools began to avoid routine work like manually entering tool data into the HMI.  Computerized Numerical Controlled CNC machine tools gained more and more market share in metalworking applications.  These machines are quite often equipped with automatic tool change systems. For a correct production the real tool dimensions need to be entered into the CNC to define the tool path.

Tool ID for Automatic and Reliable Data Handling

Rather than entering the real tool diameter and tool length manually into the CNC, this data may be measured by a tool pre-setter and then stored in the RFID tool chip via an integrated RFID read-/write system. Typically when the tool is entered in the tool magazine the tool data are read by another read-/ write system which is integrated in the machine tool.

Globally in most cases the RFID tool chips are mounted in the tool holder (radially mounted eg. in SK or HSK holders).

In some applications the RFID tool chips are mounted in the pull stud (which holds the tool in the tool holder). Especially in Japan this tag position is used.

Tool Data for Different Levels of the Automation Pyramid

The tool data like tool diameters and tool lengths are relevant for the control level to guarantee a precise production of the workpieces.  Other data like planned and real tool usage times are relevant for industrial engineering and quality control to e.g. secure a defined surface finish of the workpieces.  Industrial engineers perform milling and optimization tests (with different rotational spindle speeds and tool feed rates) in order to find the perfect tool usage time as a balance between efficiency and quality.  These engineering activities typically are on the supervision level.  The procurement of new tools (when the existing tools are worn out after e.g.  5 to 10 grinding cycles) is conducted via the ERP System as a part of the asset management.

 

Coming back to the beginning of the 3rd industrial revolution the concept of CIM (Computer Integrated Manufacturing) was created, driven by the integration of computers and information technology (IT).

With the 4th industrial revolution, Industry 4.0, the success story of the Internet now adds cyber physical systems to industrial production.  Cloud systems support and speed up the communication between customers and suppliers.  Tool Management covers two areas of the Automation pyramid.

  1. Machine Control: From sensor / actuator level up to the control level (real time )
  2. Asset Management: Up to enterprise level and beyond (even to the “Cloud”)

To learn more about Tool ID visit www.balluff.com

Posted in All posts, Industrial Identification, Industrial RFID Systems | Tagged , , , , | Leave a comment

How Hot is Hot? – The Basics of Infrared Temperature Sensors

Detecting hot objects in industrial applications can be quite challenging. There are a number of technologies available for these applications depending on the temperatures involved and the accuracy required. In this blog we are going to focus on infrared temperature sensors.

Every object with a temperature above absolute zero (-273.15°C or -459.8°F) emits infrared light in proportion to its temperature. The amount and type of radiation enables the temperature of the object to be determined.

In an infrared temperature sensor a lens focuses the thermal radiation emitted by the object on to an infrared detector. The rays are restricted in the IR temperature sensor by a diaphragm, to create a precise measuring spot on the object. Any false radiation is blocked at the lens by a spectral filter. The infrared detector converts radiation into an electrical signal. This is also proportional to the temperature of the target object and is used for signal processing in a digital processor. This electrical signal is the basis for all functions of the temperature sensor.

There are a number of factors that need to be taken into account when selecting an infrared temperature sensor.

  • What is the temperature range of the application?
    • The temperature range can vary. Balluff’s BTS infrared sensor, for example, has a range of 250°C to 1,250°C or for those Fahrenheit fans 482°F to 2,282° This temperature range covers a majority of heat treating, steel processing, and other industrial applications.
  • What is the size of the object or target?
    • The target must completely fill the light spot or viewing area of the sensor completely to ensure an accurate reading. The resolution of the optics is a relationship to the distance and the diameter of the spot.

  • Is the target moving?
    • One of the major advantages of an infrared temperature sensor is its ability to detect high temperatures of moving objects with fast response times without contact and from safe distances.
  • What type of output is required?
    • Infrared temperature sensors can have both an analog output of 4-20mA to correspond to the temperature and is robust enough to survive industrial applications and longer run lengths. In addition, some sensors also have a programmable digital output for alarms or go no go signals.
    • Smart infrared temperature sensors also have the ability to communicate on networks such as IO-Link. This network enables full parameterization while providing diagnostics and other valuable process information.

Infrared temperature sensors allow you to monitor temperature ranges without contact and with no feedback effect, detect hot objects, and measure temperatures. A variety of setting options and special processing functions enable use in a wide range of applications. The IO-Link interface allows parameterizing of the sensor remotely, e.g. by the host controller.

For more information visit www.balluff.com

Posted in All posts, Photoelectric Sensors | Tagged , , , , , , , | 1 Comment

Project Uptime – Pay Me Now or Pay Me Later

Back when I worked in the tier 1 automotive industry we were always trying to find time to break into our production schedule to perform preventative maintenance. The idea for this task was to work on the assembly machines or weld cells to improve sensor position, sensor and cable protection and of course clean the machines. As you all know this is easier said than done due to unplanned downtime or production schedule changes, for example. As hard as it is to find time for PM’s (preventative maintenance) it is a must to stay ahead and on top of production. PM’s will not only increase the production time, but it will also help maintain better quality parts by producing less scrap and machine downtime due damaged sensors or cables.

If you have read any of my previous posts you have probably noticed that I refer to the “pay me now or pay me later” analogy. This subject would fall directly into this category, you have to take the time to prevent machine crashes and damaged sensors and cables on the front side rather than being reactive and repairing them when they go down. It has been proven that a properly bunkered or protected proximity sensor will outlast the machine tooling when best practices are executed. It’s important to take the time and look at the way a sensor is mounted or protected or acknowledge when a cable is routed in harm’s way.

Click to enlarge

PM’s should be an important task that is part of a schedule and followed through in any factory automation or tier 1 production facility. In some cases I have seen where there is a complete bill of material (BOM) or list of tasks to accomplish during the PM time. This list will help maintenance personnel and engineering know what to look for and what are the hot spots that create unplanned downtime.  This list could also indicate some key sensors, mounting brackets and high durability cables that can improve the process.

For more information on a full solution supplier or products that can improve and decrease downtime click here.

Posted in All posts | Tagged , , , | Leave a comment

Level Sensing in Machine Tools

Certainly the main focus in machine tools is on metal cutting or metal forming processes.

To achieve optimum results in cutting processes coolants and lubricants are applied. In both metal cutting and metal forming processes hydraulic equipment is used (as hydraulics create high forces in compact designs). For coolant, lubricant and hydraulic tanks the usage of level sensors to monitor the tank level of these liquids is required.

Point Level Sensing

For point level sensing (switching output) in many cases capacitive sensors are used. These sensors detect the change of the relative electric permittivity (typically a change of factor 10 from gas to liquid). The capacitive sensors may be mounted at the outside of the tank wall if the tank material is non metallic like e.g. plastic or glass. The installation may even be in retrofit applications yet limited to non metallic tanks up to a certain wall thickness.

When using metal tanks the capacitive sensors enter the inner area of the tank via a thread and a sealing component. Common thread sizes are: M12x1, M18x1, M30x1,5, G 1/4″, NPT 1/4″ etc. For conductive liquids specially designed capacitive level sensors may be used which ignore build up at the sensing surface.

Continuous Level Sensing

Advanced process control uses continuous level sensing principles. The continuous sensor signals e.g. 0..10V, 4…20mA or increasingly IO-Link deliver more information to better control the liquid level, especially relevant in dynamic or precise applications.

When using floats the magnetostrictive sensing principle offers very high resolution of the level value. Tank heights vary from typically 200 mm up to several meters. Another advantage of this sensor principle is the high update rate (supporting fast closed loop systems for level sensing)

In many applications the  requirements for the level control solutions are not too demanding. In these cases the ultrasonic principle has gained significant market share within the last years. Ultrasonic sensors do not need a float, installation on the top of the tank is pretty easy, there are even sensor types available which may be used in pressurized tanks (typically up to 6 bar). As ultrasonic sensors quite often are used in special applications, field tests during the design in process are recommended.

Finally hydrostatic pressure transducers are an option for level sensing when using non pressurized tanks (typically  connected to ambient pressure through a bore in the upper area of the tank). With the sensor mounted at the bottom of the tank the level is indirectly measured through the pressure of the liquid column above the sensor (e.g. 10m of water level resembles 1 bar).

Summary

Concerning level sensing in metalworking applications in the first step it should be decided whether point level sensing is sufficient or continuous level sensing is required. Having chosen continuous level sensing there are several sensor principles available (selection depending on the application needs and features of the liquids and tank properties). It is always a good engineering practice to prove the preselected sensing concept with field tests.

To learn more visit www.balluff.com

Posted in All posts, Level Sensing, Liquid Level Sensing | Tagged , , , , , , , , , | Leave a comment

An Easy Solution to Extend Sensor Life

Quick-change prox mounts for proximity sensors.

Everyone is looking for quick tricks of the trade. Sensor failure can prove to be costly in any environment. One of the easiest ways to avoid unnecessary downtime would be to add a mounting bracket plus prox mount to the machine to extend the life of a sensor.

What is a prox mount?

It has a quick release tube mounted into a tubular bracket to change out a sensor easily. The sensor is assembled into the prox mount tube and locked into place with a compression ring and metal nut. The prox mount and sensor assembly is then mounted and adjusted as with any tubular sensor, but the prox mount will remain in place on future sensor replacement tasks.

Mounting accessories are geared toward extending sensor performance in harsh industrial conditions involving chemical attack, debris accumulation, shock/vibration/impact, and high temperatures. The brackets act as protection, as well as mounting for the sensor to extend the life of the sensor. Adding a prox mount to it add another layer of protection as well as reducing down time due to the quick release to change a sensor.

Fully Assembled Prox Mount with Sensor Installed

Mounting brackets are a simple solution to decrease installation costs by screwing in the bracket on the machine. They are also prolonging sensor life expectancy by giving it an added layer of protection. Add in the prox mount for a faster option to reduce unplanned downtime with the quick release of the sensors. This helps increase the overall performance and utility of sensors.

To get started visit www.balluff.us

Posted in All posts, Sensor Accessories | Tagged , , , , , | Leave a comment

What does that “Ready for IIoT” tag really mean?

These days almost every smart industrial device that comes to the market is advertised as “ready for IIoT.” But what does it actually mean? Before we get too technical, we should look at what the objectives are for IIoT and why it is important to the industrial age of our time.

In a previous post, “The promise of the Industrial Internet of Things (IIoT)“, we highlighted features such as Virtual IP address, to help address several things that plant maintenance and management would like to achieve. This blog touches those topics in a different perspective.

The concept of the Industrial Internet of Things (IIoT), or Industry 4.0, applies to the future of industrial automation, and these concepts heavily rely on the interoperability of a wide variety of devices and systems that communicate large amounts of data. This data is important because IIoT promises superior efficiency of machines and personalized manufacturing. Personalized manufacturing – also known as micro batch production or lot size one – means connecting with the customers at an individual level rather than connecting to masses. If efficiency and customization in production are the end goals or prime objectives for IIoT, these questions must be answered: What type of data would be necessary? Where and how is that data obtainable? In other words, what are the capabilities or characteristics of the device or system that really qualify as being “ready for IIoT”? Does simply providing an Ethernet connection to the device or adding a webserver qualify the device for IIoT? The answer is NO!

In my opinion, the following 5 key characteristics/capabilities, depending of course on the end user’s objectives, would qualify for being “ready for IIoT” tag.

If an end-user of automation wants to run the plant efficiently, the device or system should be able to provide information regarding; (1) Condition Monitoring, and (2) Automatic Parameterization

  1. Condition Monitoring enables predictive maintenance and eliminates unplanned downtime. Is the PLC or automation controller the right place for determining predictive maintenance? Maybe not. The PLC should focus on making sure the system is running effectively. Adding more non-application related stuff to the PLC may disrupt what is truly important. In most cases you would need a different PC or server to do this pattern analysis throughout the plant. A system or device with the “ready for IIoT” tag should be able to collect and provide that information to a higher level controls system/server. An example would be a power supply with IO-Link. Through the IO-Link master it tells the system about the stress or ambient temperature and predicts its lifetime.
  2. Automatic configuration or parameterization of sensors and systems. This feature enables plug-n-play benefit so that replacing devices is easy and the system automatically configures the replaced device to reduce downtime.

As IT and Controls Engineering work closer together, there are other characteristics of the devices that become important.

  1. Configurability of sensors and production line beyond controller of the system: Automation controllers in use today have physical limits of memory and logic. Today manufacturers are running multiple batches of different products on the same line which means more change over and more downtime. If the devices could allow for quick line change configurations such as set point changes for your sensors, different pressures on fluids, different color detections for the parts or even the ability to provide you with detection of the physical format change, that would significantly reduce your changeover times. In a PLC or controller, you can only build logic for factors known today (for ex. the number of configurations), but in the near future there will be additional product configurations. To be truly ready for the IIoT, you need devices that can be configured (with proper authorizations) in multiple ways. A webserver might be one of the ways – but that also has its limitations. Simple Network Management Protocol (SNMP) is widely used with several of the network management software tools in the IT world. OPC UA is another open communication protocol in industrial space. JSON is a protocol for cloud interface among many others. A device that can offer connectivity, via SNMP, OPC UA, JSON or other such open formats, to connect to other network software tools to gather information or configuration would solve several of these challenges without burdening the existing PLC or controller logic. In other words, these types of interfaces can connect your machine directly to an MRP or similar enterprise-level system which would make production floors much more efficient for quick changeovers.
  2. Capability for asset tracking, and quick troubleshooting: These features become important when there are hundreds of parameters changing and configurations evolving as your system becomes smarter and more efficient. To ensure right things are happening down the line, error-proofing your system becomes essential, and this involves additional information tracking. So the systems or solutions you choose should have these features.
  3. Scalability for the future: This characteristic can be interpreted in many different ways. But, in this blog it refers to adding features and functions as the need arises and building in capability to adapt to these changes is needed so that you are not starting from scratch again when the business needs to evolve again.

So, as we move into this new era of manufacturing, it is important to understand what the “ready for IIoT” tag on the device you are investing in means, and how it is helping you become more efficient or helping you connect to your customer one-on-one. Using IIoT to implement an ‘Enable and Scale’ plan would be the best way to meet the ever-evolving needs for the plant floor.

To learn more about IIoT and Industry 4.0 visit www.balluff.us.

Posted in All posts, Industrial Internet of Things | Tagged , , , , , , , , | 1 Comment

Real-Time Optical Thickness Gauging for Hot Rolling Mills

An ever-present challenge in hot rolling operations is to ensure that the material being produced conforms to required dimensional specifications. Rather than contact-based measurement, it is preferred to measure the material optically from a standoff position.

Light band gauging station in hot strip rolling operation detects material thickness in real time.

Light band gauging station in hot strip rolling operation detects material thickness in real time.

In some instances, this has been accomplished using two ganged analog optical lasers, each detecting opposite sides of the material being measured. Through mathematical subtraction, the difference representing thickness could be determined. One difficulty of the approach is the need to put a sensor both above and below the material under inspection.  The sensor mounted below could be subjected to falling dirt and debris. Further, only a single point on the surface could be measured.

A new approach uses a scanning laser to create a band of light that is used to directly measure the thickness of the material.  An analog or digital IO-Link signal represents the measured thickness to a resolution of 0.01mm with a repeat accuracy between 10μm to 40μm depending on distance between emitter and receiver.  What’s more, the measurement can be taken even on red-hot metals. The illustration above shows a flat slab but the concept works equally well or better on products with a round profile.

To learn more visit www.balluff.us

Posted in All posts, Object Detection Sensors, Photoelectric Sensors | Tagged , , , , , , , , | Leave a comment

A new angle on rotary feedback

steelindustryTransporting hot materials (ex. steel slabs) from one location to another via a walking-beam is common place in steel manufacturing. In the past, rotary encoders have typically been used to provide the precise feedback of rotary movement for these types of applications. However, optical encoders are prone to failure in harsh environments. Steel mills utilizing walking-beams for material handling have plenty of dirt and particulates in the air as well as produce high shock and vibration. All of these would contribute to an overall harsh environment which would shorten the life of an optical encoder.

Precise position checking and the continuous adjustment of rotational movements are extremely important on the walking-beam. Inclination Sensors are ideally suited for these exact tasks. With contact-free angle measurement, they guarantee maximum precision when the slabs are being transported. Inclination Sensors do not need mechanical coupling in contrast to rotary encoders, are compact and robust, and measure the deviation from the horizontal on an axis of up to 360°.
inclination-axisDowntime at a Steel Mill can cost up to tens of thousands of dollars per hour. The next time you need you have an angular measurement application in such harsh environments, you may want to consider an Inclination Sensor. It will surely be up to the task!

For more information on Balluff solutions for the metallurgy industry, start here.

For more information, visit www.balluff.com.

Posted in All posts, Linear Position and Distance Measurement | Tagged , , , , | Leave a comment

IO-Link Hydraulic Cylinder Position Feedback

Ready for a better mousetrap?  Read on…..btl_io-link

Some time ago here on Sensortech, we discussed considerations for choosing the right in-cylinder position feedback sensor.  In that article, we said:

“…….Analog 0-10 Vdc or 4-20 mA interfaces probably make up 70-80% of all in-cylinder feedback in use…..”

And while that 70-80% analog figure is still not too far off, we’re starting to see those numbers decline, in favor a of newer, more capable interface for linear position feedback:  IO-Link.  Much has been written, here on Sensortech and elsewhere, about the advantages offered by IO-Link.  But until now, those advantages couldn’t necessarily be realized in the world of hydraulic cylinder position feedback.  That has all changed with the availability of in-cylinder, rod-style magnetostrictive linear position sensors.  Compared to more traditional analog interfaces, IO-Link offers some significant, tangible advantages for absolute position feedback in hydraulic cylinders.

Connectivity

First and foremost, the story of IO-Link is that it offers easy, simple connection of sensors and IO to nearly any industrial network.  You can read more about that here.

Simplicity

Another big advantage of IO-Link is the ability to connect sensors to the network using standard, simple, unshielded M12 connectors and cables.  Compared to analog systems, which require shielded cabling, and sometimes unusual or proprietary connectors, connecting IO-Link sensors to the network is simpler, and usually less costly.

Visibility

Unlike their traditional analog counterparts, position sensors with IO-Link offer built-in diagnostic capabilities.  Sensor status can be monitored over the network, greatly simplifying troubleshooting and fault detection.

Flexibility

This is where IO-Link position sensors really start to shine.  Traditional analog position sensors provide one thing: position feedback in the form of an analog signal (obviously).  IO-Link position sensors provide position feedback, of course…but wait, there’s more.  In addition to position feedback, IO-Link sensors can provide velocity/speed information, temperature, and differential position (the difference between two position magnets).  And the best part?  All of this functionality can be freely configured over the network.  Plus, sensor configurations can be stored and subsequently downloaded to a replacement sensor if necessary.

Suitability

It’s worthwhile to point out that IO-Link linear position sensors are ideal for most positioning or position monitoring applications.  Just as with analog sensors though, they’re probably not suitable for high-performance closed-loop servohydraulic motion control applications.  In those applications, interfaces that are capable of providing super-fast, deterministic data, such Synchronous Serial Interface (SSI) or even Ethernet/IP are more suitable.

To learn more visit www.balluff.us

You can also learn more in this overview flyer.

Posted in IO-Link, Linear Position and Distance Measurement | Tagged , , , , | 2 Comments

Basic Color Sensor Overview

PrintIn the past, color sensors emitted light using red, green and blue LEDs’. The sensors were then able to distinguish colors using the RGB components of the reflected light back to the sensor’s receiver. As technology has progressed true color sensors have been developed that not only can compare colors but measure them more accurately than the human eye.

Color sensors are based on diffuse technology and can be compared to a fixed focus or convergent sensor because of the focused light spot. Unlike color contrast sensors that only detect the difference between two colors based on brightness, color sensors can detect a wide range of colors.

cielabTrue color sensors typically use white LED’s which allow for a greater color spectrum evaluation. Combine this with the CIELAB color system which is one of the most versatile color systems and the result is a color sensor that equals or exceeds the human eye. The CIELAB color system is a three-dimensional independent infinite representation of colors. The L component for lightness and a and b components for color are predefined absolute values. Lightness varies from black (0) to the brightest white (100). Color channel a varies from green negative 100 to red positive 100. Color channel b varies from blue negative 100 to yellow positive 100 with gray values at a=0 and b=0.

Due to the technology, color sensors can check only a small spot of color but can check this spot amazingly fast – up to 1.5 kHz in case of the Balluff’s fiber optic BFS 33M which also has a range of 400mm. Unlike a color sensor camera, which will focus on the object’s surface pattern and may cause false readings the true color sensor will ignore patterns thus providing more accurate color detection. In addition the true color sensor will have more outputs than the color camera.

Smart color cameras are working with RGB but could work also with HSV color models. They could be used to check larger areas for the same color or color codes on a part, but have slower update rate of 50 Hz. Special cameras for faster applications are available in the market but at higher costs. It is important that the light source for the smart color cameras be a white light with a standardized white balance, and that this light must kept constant for all checks to avoid errors.

The sophistication on the front end of the color sensor can be much more advanced and still remain a cost effective option for industrial use due to the fact that a camera requires a much larger processing system. The more sophisticated the sensors are in the camera the more robust the processor must be in order to process or map the data into an image.

To learn more visit www.balluff.us.

You can also request a digital copy of our Photoelectric Handbook here.

Posted in Object Detection Sensors, Photoelectric Sensors | Tagged , , , , | Leave a comment