IO-Link vs. Analog in Measurement Applications

IO-Link is well-suited for use in measurement applications that have traditionally used analog (0…10V or 4…20mA) signals. This is thanks in large part to the implementation of IO-Link v1.1, which provides faster data transmission and increased bandwidth compared to v1.0. Here are three areas where IO-Link v1.1 excels in comparison to analog.

1

Fewer data errors, at lower cost

By nature, analog signals are susceptible to interference caused by other electronics in and around the equipment, including motors, pumps, relays, and drives. Because of this, it’s almost always necessary to use high-quality, shielded cables to transmit the signals back to the controller. Shielded cables are expensive and can be difficult to work with. And even with them in place, signal interference is a common issue that is difficult to troubleshoot and resolve.

2

With IO-Link, measurements are converted into digital values at the sensor, before transmission. Compared to analog signals, these digital signals are far less susceptible to interference, even when using unshielded 4-wire cables which cost about half as much as equivalent shielded cables. The sensor and network master block (Ethernet/IP, for example) can be up to 20 meters apart. Using industry-standard connectors, the possibility for wiring errors is virtually eliminated.

3

Less sensor programming required

An analog position sensor expresses a change in position by changing its analog voltage or current output. However, a change of voltage or current does not directly represent a unit of measurement. Additional programming is required to apply a scaling factor to convert the change in voltage or current to a meaningful engineering unit like millimeters or feet.

It is often necessary to configure analog sensors when they are being installed, changing the default characteristics to suit the application. This is typically performed at the sensor itself and can be fairly cumbersome. When a sensor needs to be replaced, the custom configuration needs to be repeated for the replacement unit, which can prolong expensive machine downtime.

IO-Link sensors can also be custom configured. Like analog sensors, this can be done at the sensor, but configuration and parameterization can also be performed remotely, through the network. After configuration, these custom parameters are stored in the network master block and/or offline. When an IO-Link sensor is replaced, the custom parameter data can be automatically downloaded to the replacement sensor, maximizing machine uptime.

Diagnostic data included

A major limitation of traditional analog signals is that they provide process data (position, distance, pressure, etc.) without much detail about the device, the revision, the manufacturer, or fault codes. In fact, a reading of 0 volts in a 0-10VDC interface could mean zero position, or it could mean that the sensor has ceased to function. If a sensor has in fact failed, finding the source of the problem can be difficult.

With IO-Link, diagnostic information is available that can help resolve issues quickly. As an example, the following diagnostics are available in an IO-Link magnetostrictive linear position sensor: process variable range overrun, measurement range overrun, process variable range underrun, magnet number change, temperature (min and max), and more.

4

This sensor level diagnostic information is automatically transmitted and available to the network, allowing immediate identification of sensor faults without the need for time-consuming troubleshooting to identify the source of the problem.

To learn about the variety of IO-Link measurement sensors available, read the Automation Insights post about ways measurement sensors solve common application challenges. For more information about IO-Link and measurement sensors, visit www.balluff.com.

A Gap Opens for Magnetic Linear Encoders

Innovation sometimes explodes onto the scene as a disruptive technology. More often, though, it arrives quietly in the form of continuous improvement that enhances performance and expands the scope of application capabilities. Sometimes evolutionary improvements are subtle, but once in a while they are game-changing.

When it comes to magnetic linear encoders, there have been steady improvements over the years in terms of resolution and linearity, enabling them to replace optical linear encoders in many applications at a fraction of the cost. One stubborn limitation, however, has been the trade-off between measuring performance and tape-to-sensor gap distance, sometimes called simply the gap distance or the ride height. Generally speaking, the higher the resolution and/or linearity specification, the smaller the allowable gap distance or ride height becomes. This reduction in ride height requires a corresponding tightening of machine tolerances in order to ensure that the maximum allowable gap distance is not exceeded.

Magnetic linear encoder

Recent breakthroughs in magnetic encoder design and technology have resulted in a new class of linear encoder systems that offer greatly expanded ride height. For example, an incremental system with 1 μm resolution and a system accuracy of ± 10 μm required a typical maximum tape-to-sensor gap distance of 0.35 mm. Now, the new generation of encoder technology can deliver the same 1 μm resolution and a similar ± 12 μm system accuracy, but with a maximum gap distance of 1.0 mm, nearly a threefold increase in ride height. That means far better tolerance of variability in the gap distance as the machine goes through its motions.

What’s more, encoder functionality can be assured even when the gap distance increases to as much as 1.8 mm, albeit with some loss of accuracy at these extreme distances. The ability to tolerate expanded variation in ride height ensures that machine operation will not be disrupted by loss of the encoder signal, even when gap tolerances occasionally exceed design maximums. That translates directly into greater design freedom for the engineer, and more machine uptime with fewer nuisance stoppages for the end user.

To learn more about the new generation of magnetic linear encoders, visit www.balluff.com.

 

Where Discrete Position Sensing Belongs in the Manufacturing Process

Unlike continuous position sensors which provide near real-time position feedback throughout the stroke of the cylinder, discrete position sensors are equipped with a switching functionality at one or more designated positions along the cylinder’s stroke. Typically, these positions are set to detect fully retracted and extended positions but one can also be used to detect mid-stroke position.

To determine which is right for you requires a review of your application and a determination of how precisely the movement of the cylinder needs to be controlled. Some hydraulic cylinder applications require no position sensing at all. These applications simply use the cylinder to move a load, and position control is either done manually or by some other external switch or stop. Moving up a step, many applications require only that the beginning and end of the cylinder stroke be detected so that the cylinder can be commanded to reverse direction. These applications are ideal for discrete position sensing.

Several types of sensors are used for discrete position detection, but one of the most common is high-pressure inductive proximity sensors, which are installed into the end caps of the cylinder. The sensors detect the piston as it reaches the end of the cylinder stroke in either direction.

These sensors are designed to withstand the full pressure of the hydraulic system. Inductive sensors are extremely reliable because they operate without any form of mechanical contact and are completely unaffected by changes in oil temperature or viscosity.

High-pressure
High-pressure inductive sensors installed in hydraulic cylinder

Discrete position sensors are used in applications such as hydraulic clamps, detection of open/closed position in welding operations, and in hydraulic compactors and balers for compacting materials until end of cylinder stroke is reached, at which point the cylinder retracts.

Additionally, it is quite common for pneumatically-actuated clamps and grippers to use discrete sensors to indicate fully extended and fully retracted positions, and in many cases, in-between positions as well. There are even applications where multiple discrete sensors are used in grippers for gauging and sizing work pieces.

By far, the most common method of providing discrete position in an air cylinder is to use externally-mounted switches that react to a magnet installed around the circumference of the piston. These magnetically-actuated switches can sense the field of a magnet embedded in the cylinder’s piston through the aluminum body of the cylinder.

magnetically actuated
Magnetically actuated sensor installed into cylinder C-slot

There are several different operating principles used in these magnetically-actuated switches, ranging from simple, low-cost reed switches and Hall-effect switches to significantly more reliable sensors that use magnetoresistive technology. One of the big advantages of magnetoresistive sensors is that they will reliably detect both radial and axial magnetic fields, making them ideal replacements for reed or Hall-effect switches.

Check out our previous blog to learn more about continuous position sensors.

When and Where to Use Continuous Cylinder Position Sensing

The role of smart cylinders — hydraulic or pneumatic cylinders with integrated position detection capability — has increased as manufacturers constantly strive to improve efficiency through automation. Smart cylinders can use either continuous or discrete position sensing, providing manufacturers with options, but possibly leaving them with questions on which is best for their application.

In this post we will review the benefits of continuous position sensors and list the applications where this is the best fit.

Continuous position sensors provide near real-time position feedback throughout the entire stroke of the cylinder making them the ideal choice for applications at the higher end of the control spectrum. Closed-loop servohydraulic systems can achieve sophisticated, dynamic control of motion across the entire cylinder stroke.

Continuous position sensors are commonly used when the application calls for closed-loop servo control, where the position, speed, acceleration, and deceleration of the cylinder must be controlled. Closed-loop servohydraulics have been widely used in industrial applications, such as sawmills, steel processing and tire manufacturing, and more recently in cylinders in off-highway equipment.

Magnetostrictive linear position sensors are the most commonly used continuous position sensors in hydraulic cylinders. These sensors are installed into the back end of the cylinder. The sensor detects the position of a magnet attached to the piston and provides a continuous, absolute position signal.

Blog
Magnetostrictive linear position sensor installed in hydraulic cylinder

The sensor is rated to withstand the full pressure of the hydraulic system. Magnetostrictive technology offers the advantage of being completely non-contact, meaning it requires no mechanical contact between the sensor and the moving cylinder and is not subject to wear and performance degradation. In addition, numerous electrical interface options are available, from simple analog (0 to 10V or 4-20mA) to high-performance industrial fieldbus interfaces that offer advanced functionality.

Continuous position sensors can also be used in pneumatic cylinders. While closed-loop servo control with pneumatics is not as common as it is with hydraulics, there are situations where pneumatic cylinders require continuous position sensing capability. For example, low-pressure pneumatic cylinders are sometimes used as measurement probes, or touch probes, where the cylinder rod is extended until it touches a part to be measured or gaged. In these situations, it is beneficial to be able to get continuous position feedback, especially when there is variability in the measured part.

To learn more about cylinder position sensing, visit www.balluff.com.

Clamp Control of Tools and Workpieces

In Metalworking, the clamping status of tools and workpieces are monitored in many Image1applications. Typically, inductive sensors are used to control this.

Three positions are usually detected: Unclamped, clamped with object, and clamped without object. The sensor position is mechanically adjusted to the application so the correct clamping process and clamping status is detected with a proper switch point. Additionally, with the usage of several sensors in many cases the diagnostic coverage is increased.

For approximately 15 years, inductive distance sensors with analog output signals have been utilized in these applications with the advantage of providing more flexibility.

 Image2By using a tapered (conical) shape, an axial movement of the clamping rod can be sensed (as a change of distance to the inductive sensor with analog output). Several sensors with binary (switching) output can be replaced with a sensor using such a continuous output signal (0..10V, 4-20 mA or e.g. IO-Link). Let’s figure a tool in a spindle is replaced by another tool with a different defined clamping position. Now, rather than mechanically changing the mechanical position of the inductive sensor with binary output, the parameter values for the correct analog signal window are adjusted in the control system. This allows easy parameter setting to the application, relevant if the dimensions of the clamped object may vary with different production lots.

The latest state-of-the-art sensor solution is the concept of a compact linear position system which is built of several inductive sensor elements mounted in one single housing. Image3

Instead of a tapered (conical) shape, a disk shaped target moves lateral to the sensor. From small strokes (e.g. 14 mm) up to more than 100 mm, different product variants offer the best combination of compact design and needed lateral movement. Having data about the clamping force (e.g. by using pressure sensors to monitor the hydraulic pressure) will lead to additional information about the clamping status.

For more information on linear position sensors visit www.balluff.com.

For more information on pressure sensors, visit www.balluff.com.

 

Top 5 Automation Insights Posts from 2017

Kick off the New Year by taking a look at the top 5 Automation Insight blog posts from last year.

#5. Make sure your RFID system is future-proof by answering 3 questions

With the recent widespread adoption of RFID technology in manufacturing plants I have encountered quite a number of customers who feel like they have been “trapped” by the technology. The most common issue is their current system cannot handle the increase in the requirements of the production line. In a nutshell, their system isn’t scalable.5

Dealing with these issues after the fact is a nightmare that no plant manager wants to be a part of. Can you imagine installing an entire data collection system then having to remove it and replace it with a more capable system in 3 years or even less? It’s actually a pretty common problem in the world of technology. However, an RFID system should be viable for much longer if a few simple questions can be answered up front. Read more>>

#4. IO-Link Hydraulic Cylinder Position Feedback

Ready for a better mousetrap?  Read on…..

Some time ago here on Sensortech, we discussed considerations for choosing the right in-cylinder position feedback sensor.  In that article, we said:

“…….Analog 0-10 Vdc or 4-20 mA interfaces probably make up 70-80% of all in-cylinder feedback in use…..”

4

And while that 70-80% analog figure is still not too far off, we’re starting to see those numbers decline, in favor a of newer, more capable interface for linear position feedback:  IO-Link.  Much has been written, here on Sensortech and elsewhere, about the advantages offered by IO-Link.  But until now, those advantages couldn’t necessarily be realized in the world of hydraulic cylinder position feedback.  That has all changed with the availability of in-cylinder, rod-style magnetostrictive linear position sensors.  Compared to more traditional analog interfaces, IO-Link offers some significant, tangible advantages for absolute position feedback in hydraulic cylinders. Read More>>

#3. External Position Feedback for Hydraulic Cylinders

The classic linear position feedback solution for hydraulic cylinders is the rod-style magnetostrictive sensor installed from the back end of the cylinder. The cylinder rod is gun-drilled to accept the length of the sensor probe, and a target magnet is installed on the face of the piston. A hydraulic port on the end cap provides installation access to thread-in the pressure-rated sensor tube. This type of installation carries several advantages but also some potential disadvantages depending on the application. Read More>>

3

#2. 3 Smart Applications for Process Visualization

Stack lights used in today’s industrial automation haven’t changed their form or purpose for ages: to visually show the state (not status) of the work-cell. Since the introduction of SmartLight, I have seen customers give new2 meaning to the term “process visualization”. Almost every month I hear about yet another innovative use of the SmartLight. I thought capturing a few of the use-cases of the SmartLight here may help others to enhance their processes – hopefully in most cost effective manner.

The SmartLight may appear just like another stack-light.  The neat thing about it is that it is an IO-Link device and uses simply 3-wire smart communication on the same prox cable that is used for sensors in the field. Being an IO-Link device it can be programmed through the PLC or the controller for change of operation modes on demand, or change of colors, intensity, and beeping sounds as needed. What that means is it can definitely be used as a stack light but has additional modes that can be applied for all sorts of different operation/ process visualization tasks. Read More>>

#1. What is a Capacitive Sensor?

Capacitive proximity sensors are non-contact devices that can detect the presence or absence of virtually any object regardless of material.  1They utilize the electrical property of capacitance and the change of capacitance based on a change in the electrical field around the active face of the sensor.

A capacitive sensor acts like a simple capacitor.  A metal plate in the sensing face of the sensor is electrically connected to an internal oscillator circuit and the target to be sensed acts as the second plate of the capacitor.  Unlike an inductive sensor that produces an electromagnetic field a capacitive sensor produces an electrostatic field. Read More>>

IO-Link Measurement Sensors Solve Application Challenges

In industrial distance and position measurement applications, one size definitely does not fit all.  Depending on the application, the position or distance to be measured can range from just a few millimeters up to dozens of meters.  No single industrial sensor technology is capable of meeting these diverse requirements.

Fortunately, machine builders, OEM’s and end-users can now choose from a wide variety of IO-Link distance and position measurement sensors to suit nearly any requirement.  In this article, we’ll do a quick rundown of some of the more popular IO-Link measurement sensor types.

(For more information about the advantages of IO-Link versus traditional analog measurement sensors, see the following blog posts, Solving Analog Integration Conundrum, Simplify Your Existing Analog Sensor Connection, and How Do I Make My Analog Sensor Less Complex?)

 

Short Range Inductive Distance Sensors

These sensors, available in tubular and blockScott Image1.JPG style form factors are used to measure very short distances, typically in the 1…5 mm range.  The operating principle is similar to a standard on/off inductive proximity sensor.  However, instead of discrete on/off operation, the distance from the face of the sensor to a steel target is expressed as a continuously variable value.  Their extremely small size makes them ideal for applications in confined spaces.

Inductive Linear Position Sensors

Inductive linear position sensors are available in several block style form factors, and are used for position measurement over stroke lengths up to about 135 mm.  These types of sensors use an array of inductive coils to accurately measure the position of a metal target.  Compact form factors and low stroke-to-overall length factor make them well suited for application with limited space.

BIP(1)_46630_Produktnews_korrBIP(2)_55370_00_P_00_00_00

Magnetostrictive Linear Position Sensors

IO-Link Magnetostrictive linear position sensors are available in rod style form factors for hydraulic cylinder position feedback, and in external mount profile form factors for general factory automation position monitoring applications.  These sensors use time-proven, non-contact magnetostrictive technology to provide accurate, absolute position feedback over stroke lengths up to 4.8 meters.

Laser Optical Distance Sensors

 

Scott Image 4.JPGLaser distance sensors use either a time-of-flight measuring principle (for long range) or triangulation measuring principle (for shorter range) to precisely measure sensor to target distance from up to 6 meters away.  Laser distance sensors are especially useful in applications where the sensor must be located away from the target to be measured.

 

Magnetic Linear Encoders

IO-Link magnetic linear encoders use an absolute-codedScott Image 5 flexible magnet tape and a compact sensing head to provide extremely accurate position, absolute position feedback over stroke lengths up to 8 meters.  Flexible installation, compact overall size, and extremely fast response time make magnetic linear encoders an excellent choice for demanding, fast moving applications.

IO-Link Measurement Sensor Trends

The proliferation of available IO-Link measurement sensors is made possible, in large part, due to the implementation of IO-Link specification 1.1, which allows faster data transmission and parameter server functionality.  The higher data transfer speed is especially important for measurement sensors because continuous distance or position values require much more data compared to discrete on/off data.  The server parameter function allows device settings to be stored in the sensor and backed up in the IO-Link master.  That means that a sensor can be replaced, and all relevant settings can be downloaded from master to sensor automatically.

To learn about IO-Link in general and IO-Link measurement sensors in particular, visit www.balluff.com.

Measurement Fundamentals: Position Measurement vs. Distance Measurement

Continuous measurements on industrial machines or the materials that these machines are making, moving, or processing can be categorized into two main types of sensors:  position measurement sensors, and distance measurement sensors.  It’s a somewhat subtle distinction, but one that is important when evaluating the best measurement sensor for a particular application.

Position Measurement: When we speak in terms of position measurement, we’re typically talking about applications where a the sensor is installed onto a machine, and mechanically coupled to the moving part of the machine – or is installed into a hydraulic cylinder that is moving the machine – and is reporting the continuous position of the machine.  In a positioning application, the questions that need to be answered are: “Where is it?  Where is it now?  And now?”.

Scott image1

Examples of position measurement sensors include magnetostrictive linear position sensors and magnetically encoded linear sensors.  With each of these sensor types, either the sensor itself, or the position marker, is typically attached to the moving part of the machine.

Distance Measurement: Distance measurement sensors, on the other hand, are used in applications that require accurate measurement of a target that is typically no part of the machine.  A good example would be an application where parts or components are moving along a conveyer belt, and the position of those parts needs to be accurately measured.  In this example, it wouldn’t be practical, or even possible, to attach a sensor to the moving part.  So its position needs to be measured from a DISTANCE.  In a distance measuring application, the question being answered is: “How far away is it?”.

Scott image2

Examples of distance measuring sensors include photoelectric (laser) sensors and inductive distance sensors.  These types of sensors are usually mounted on the machine, or in the immediate vicinity of the machine, and are aimed at a point or a path where the object to be measured is, or will be, located.

In summary, while both position and distance sensors do much the same thing – provide continuous indication of position – the applications for each are generally quite different.  Gaining an understanding of the application and its requirements will help to determine which type of sensor is the best choice for the task.

For more information on position and distance measurement sensors, visit www.balluff.com.

In-Cylinder Position Sensing in Electrically Conductive Hydraulic Fluids

The standard for hydraulic fluid in the industry is mineral oil, which is a dielectric medium that does not conduct electricity. Yet environmental concerns have led to the search for alternatives that are less harmful in case of leaks and spills. One development is biodegradable oils, typically with biological origins, often called “bio-oils” for short. They behave in many ways like mineral oil with a key difference in that they can be electrically conductive.

Another alternative hydraulic fluid is water-glycol mixtures, commonly known as the anti-freeze found in your liquid-cooled automobile engine. Water-glycol solutions are used for several reasons, including environmental concerns but more often conditions of extreme heat or extreme cold. They have much lower viscosity than oil, and there are several fluid power application considerations as a result, but water-glycol mixtures, like bio-oils, are electrically conductive.

Image2

So, when it comes to cylinder position sensing, why should we care whether or not the hydraulic fluid is electrically conductive? Well, because it could come back to bite us if we put an incompatible position sensing technology into a cylinder that is filled with a conductive fluid.

I recently met an engineer who’d run into this exact situation. A hydraulic cylinder was ordered from the manufacturer with an “integrated position feedback sensor.” The feedback sensor turned out to be a resistive potentiometric type, in other words, a linear potentiometer or “pot.” The entire length of the resistive material is “wetted” inside the cylinder, along with the traveling “wiper” that moves with the piston. In typical applications with non-conductive, mineral-based hydraulic fluid, this works fine (although linear pots do tend to be somewhat fragile and do wear out over time). However, when the resistive material and wiper is wetted in a conductive liquid, all kinds of wrong start happening. The signal becomes very erratic, unstable, and lacks resolution and repeatability. This is because the fluid is basically short-circuiting the operation of the open-element linear potentiometer.

This caused quite a headache for the engineer’s customer and subsequently for the engineer. Fortunately, a replacement cylinder was ordered, this time with a non-contact magnetostrictive linear position sensor. The magnetostrictive sensor is supplied with a pressure-rated, protective stainless steel tube that isolates the electrical sensing element from the hydraulic medium. The position marker is a magnet instead of a wiper, which the sensor can detect through the walls of the stainless steel pressure tube. So, a magnetostrictive sensor is absolutely unaffected by the electrical properties of the hydraulic medium.

A magnetostrictive linear position sensor carries a lot of performance and application advantages over linear pots that make them a superior technology in most applications, but when it comes to conductive hydraulic fluids they are definitely the preferred choice.

To learn more about linear position sensors visit www.balluff.com.

Hydraulic Valves – Customize your Feedback

Hydraulic actuators can be used to open and close a valve’s position.  In automation architectures, a linear position sensor is used within the hydraulic actuator to provide continuous position feedback.

The linear position sensor is installed into the back end of the cylinder.  The sensing element resides in a cavity that has been gun-drilled through the piston and cylinder rod, Image1extending the full length of the mechanical stroke. A magnet ring is used as a position marker and mounted on the face of the piston.  As the piston (and the position marker) move, the linear position sensor provides a continuous absolute position by way of an analog or digital signal.

In some applications, a cylinder’s position may only be moving across a small portion of the overall stroke or a specific portion of the stroke.  The end user could benefit from altering the transducer’s signal based on the application’s specific stroke requirements instead of the entire cylinder’s stroke, thereby maximizing available position resolution.  When this situation arises, most transducer manufacturers offer the ability to customize or “teach” a modified output of the stroke via push buttons or from wiring inputs.  When this is done, the process does require the cylinder (and position marker) to move to these defined locations for a “teach”.

Image2

A more user-friendly and repeatable approach for customized stroke lengths with linear position sensors is to use a graphical software package. The software can be connected
from a PC via USB to a compatible linear position sensor. Starting and ending stroke values can be precisely entered into the software and a graphical representation of the output curve is created.  For a more straightforward approach, you can also drag and drop these stroke points by a click of a cursor. The file can be saved on a PC and downloaded to the transducer. In either case, the cylinder’s piston doesn’t need to be actuated.

Image3

In projects where multiple, identical actuators and linear position sensors need to be customized, the setup would only need to be done once, the file saved, and simply uploaded to all the sensors for the project.  A great time-saver over manually teaching each and every sensor.

Another benefit to using software with linear position sensors is to be able to upload programs for replacement units in a safe user environment (e.g. lab station or office) and shipping them to various job sites.  These different locations (or locales) can be in harsh environmental conditions (extreme cold or heat) or areas that contain ignitable or explosive gases or dusts which may be difficult to work in.

Image4

Other software features include inverting the output curves, offering position or velocity outputs, and more.

For more information on Balluff’s Magnetostrictive Linear Position Sensors, visit www.balluff.com.