Waterways: the Many Routes of Water Detection

 

Water is everywhere, in most things living and not, and the amount of this precious resource is always important. The simplest form of monitoring water is if it is there or not. In your body, you feel the effects of dehydration, in your car the motor overheats, and on your lawn, you see the dryness of the grass. What about your specialty machine or your assembly process? Water and other liquids are inherently clear so how do you see them, especially small amounts of it possibly stored in a tank or moving fast? Well, there are several correct answers to that question. Let’s dive into this slippery topic together, pun intended.

While mechanical float and flow switches have been around the longest, capacitive, photoelectric, and ultrasonic sensors are the most modern forms of electronic water detection. These three sensing technologies all have their strong points. Let’s cover a few comparisons that might help you find your path to the best solution for your application.

Capacitive sensors

Capacitive sensors are designed to detect nonferrous materials, but really anything that can break the capacitive field the sensor creates, including water, can do this. This technology allows for adjustment to the threshold of what it takes to break this field. These sensors are a great solution for through tank level detection and direct-contact sensing.

Ultrasonic sensors

Want to view your level from above? Ultrasonic sensors give you that view. They use sound to bounce off the media and return to the sensor, calculating the time it takes to measure distance. Their strong point is that they can overcome foam and can bounce off the water where light struggles when there is a large distance from the target to the receiver. Using the liquid from above, ultrasonics can monitor large tanks without contact.

Photoelectric sensors

Use photoelectric sensors when you’re looking at a solution for small scale. Now, this might require a site tube if you are monitoring the level on a large tank, however, if you want to detect small amounts of water or even bubbles within that water, photoelectric sensors are ideal. Using optical head remote photoelectric sensors tied to an amplifier, the detail and speed are unmatched. Photoelectric sensors are also great at detecting liquid levels on transparent bottles. In these applications with short distances, you need speed. Photoelectric sensors are as fast as light.

So, have you made up your mind yet? No matter which technology you choose, you will have a sensor that gives you accurate detail and digital outputs and is easy on the budget. Capacitive, ultrasonic, and photoelectric sensors provide all this and they grow with your application with adjustability.

Liquids are everywhere and not going away in manufacturing. They will continue to be an important resource for manufacturing.  Cherish them and ensure you account for every drop.

Detecting Fill Levels With Direct Contact and Non-contact Capacitive Sensors

Capacitive sensors are commonly used in level detection applications. Specific capacitive sensors can supply better solutions than others depending on the type of media you may be detecting and if the sensor will be in direct contact with that media. Keep reading to decide which type works best for different application solutions.

Non-contact capacitive sensors

Capacitive sensors are great for monitoring the fill level of non-conductive materials. In many cases, the capacitive sensor doesn’t need to physically touch the media it is detecting; rather, it can sit outside a thin, non-metal container or pipe. As the level rises or falls, the capacitive sensor can signal if the medium is there. Since non-contact capacitive sensors sit outside the medium, there shouldn’t be any interference or false readings from direct contact with the material.

Selecting the correct capacitive sensor for these applications is important. While you don’t have to risk contaminating the sensor face (and getting a false read) in non-contact applications, you need to keep in mind other factors that can cause a sensor to false trip. One thing that is important to keep in mind with externally mounted capacitive sensors is that viscous materials can still leave a layer of residue on the inside walls of tanks or basins. While the sensor face is not covered, if you select the wrong type of sensor this build up on the wall can cause a false reading (such as reading as reading the tank as full when it is actually half-empty).

Another thing to keep in mind when selecting the correct capacitive sensor for a non-contact application is foam. In applications such as bottling beer in glass bottles, most standard capacitive sensors will detect presence once that layer of foam reaches the sensor face. While the foam may be at the sensor face, the bottle could still be only half way full of actual liquid. Making sure you select a sensor that can account for things like foam is something to keep in mind as well.

There are many benefits when using non-contact capacitive sensors in fill level applications. Not every application requires direct contact with the medium, and not every application even allows for the medium to be touched directly. There are many capacitive sensors in many form factors that are used every day for fill level applications, but making sure the right sensor is selected is important.

Contact with media capacitive sensors

In certain applications, the capacitive sensor will only be able to detect the fill level of a container, pipe, or tank if it is in direct contact with the media it’s trying to sense.

For various reasons, a sensor must be in direct contact with a media like oil, paint, powder, or paste. You may need to place a sensor directly in a tank because the tank is made of metal, or possibly because the walls of the tank are too thick for a capacitive sensor to sense through. Direct contact applications can be difficult to find solutions for if you are not aware of what capacitive sensors are capable of.

There is a way to fix issues such as false tripping in sticky substances.

Advanced technologies allow for capacitive sensors that mask residual build-up or foam when sensing in direct media contact. These level-sensing capacitive sensors are great for applications in the food and beverage industry and for detecting practically all the same materials as non-contact capacitive sensors. In areas of detection where adhesive substances may stick to the sensor face is a perfect application for direct contact capacitive sensors. Some typical direct-contact applications include areas such as vegetable oil or ketchup container fill levels, hydraulic oil levels in a hydraulic cylinder, or even the amount of flour in a container.

For instance, if you stick a capacitive sensor inside a tank of oil to monitor the fill level, the sensor face will get covered in the oil. As the level in the tank drops below the sensor face, that oil will remain on the face. So, even if the tank is empty, the sensor will always detect something. With specialized capacitive sensors that ignore build-up, adhesive or viscous media that typically influence detection is no longer a concern.

Another use for capacitive sensors that allow for direct media contact is for leak detection. If a tank, pipe, or tub is known to leak, there are capacitive sensors that can be mounted to the ground in the area that puddles form. In some instances you know a machine could potentially leak, and puddles form in an area you can’t regularly see, which is where these sensors are perfect for application. Depending on the situation, some of these sensors can be mounted a couple millimeters to an inch off the ground waiting for a leak. As a puddle forms and reaches the sensor’s switching range, maintenance can be alerted of the issue and work to fix it.

Reduce time and costs associated with manual level-checking

Another application for a capacitive sensor with direct media contact capabilities is within the automotive industry. Inside the painting process of an assembly plant, for example, you must be able to monitor the fill levels of the e-coat, the primer, the base coat, and the clear-coat paint tanks. Without a sensor to determine the fill levels, the time and energy and dollars it can cost the workforce to manually check the fill levels can be high.. Luckily, these contact-capacitive sensors can monitor viscous media like paint, reducing the time and costs associated with manual level-checking.

While non-contact and contact capacitive sensors perform the similar functions, they are used in different applications. Some applications allow a sensor to sit outside a container or tank and detect through the walls, while others require direct contact. Now that you understand the differences and their strong points of application, you can determine which sensor is best for you.

On the Level: Selecting the Right Sensor for Level Detection

We’ve probably all experienced having the “pot boil over” or “run dry” at one time or another. The same is frequently true on a much larger scale with many industrial processes. These large events can prove costly whether running dry or overflowing, resulting in lost product, lost production time, damage to the tank, or even operator injury. And then there is the cleanup!

The fact is, many procedures require the operator to monitor the bin or tank level – especially on older equipment. This human factor is prone to fail due to inattention, distractions, and lack of proper training. With today’s employee turnover and the brain drain of retirements, we need to help the operators out.

Multiple solutions exist that can provide operators with sufficient warning of the tank and bin levels being either too low or too high. This article provides a framework and checklist to guide the selection of the best technology for a specific application.

What type of monitoring is necessary?

First, consider whether the application requires or would benefit from continuous monitoring, or is point-level monitoring all that is needed?

    • Point-level monitoring is the simplest. It is essentially sensing whether the product is present at specific detection point(s) in the tank or bin. If the goal is to avoid running dry or overflowing, monitoring the bin or tank point level may be all that is required. Point-level sensors typically are best if the product levels can be detected through the wall or inside the tank or bin itself. A number of sensors can prevent false readings with products that are viscous, leaving residue on the sensor, and even ignore foam.
    • Continuous-level monitoring detects levels along a range – from full to empty. This is required when the exact level of the product must be known, such as for batch mixing.

Checklist for sensor selection

The checklist below can help guide you to what should be the appropriate technologies to consider for your particular application. Frequently, more than one type of technology may work, given the media (or product) you’re detecting, so it may make sense to test more than one.

Checklist for sensor selection

Ultimately, the sensor(s) you select must reliably sense/detect the presence of the subject product (or media). Which solution is least costly is frequently a big consideration, but remember there can be a hefty cost associated with a sensor that gives a false reading to the operator or control system.

Choosing sensors for washdown or clean-in-place environments

For products that will be consumed or entered into the human body, further selection considerations may include sensors that must survive in washdown or clean-in-place environments without contaminating the product.

The encouraging news is that sensors exist for most applications to detect product levels reliably. The finesse is in selecting the best for a given application when multiple technologies can do the job.

Again, there may be some trial and error at play but this checklist should at least narrow the field and pointed you to the better solution/technology.

Choosing a Contactless Sensor to Measure Objects at a Distance

Three options come to mind for determining which contactless sensor to use when measuring objects at a distance: photoelectric sensors, ultrasonic sensors, and radar detection. Understanding the key differences among these types of technologies and how they work can help you decide which technology will work best for your application.

Photoelectric sensor

The photoelectric sensor has an emitter that sends out a light source. Then a receiver receives the light source. The common light source LED (Light Emitting Diodes), has three different types:

    • Visible light (usually red light) has the shortest wavelength, but allows for easy installment and alignment as the light can be seen.
    • Lasers are amplified beams that can deliver a large amount of energy over a distance into a small spot, allowing for precise measurement.
    • Infrared light is electromagnetic radiation with wavelengths longer than visible light, generally making them invisible to the humans. This allows for infrared to be used in harsher environments that contain particles in the air.

Along with three types of LEDs, are three models of photoelectric sensors:

    • The retro-reflective sensor model includes both an emitter and receiver in one unit and a reflector across from it. The emitter sends the light source to the reflector which then reflects the light back to the receiver. When an object comes between the reflector and the emitter, the light source cannot be reflected.
    • The through-beam sensor has an emitter and receiver in two separate units installed across from the emitter. When an object breaks the light beam, the receiver cannot receive the light source.
    • The diffuse sensor includes an emitter and receiver built into one unit. Rather than having a reflector installed across from it the light source is reflective off the object back to the receiver.

The most common application for photoelectric sensors is in detecting part presence or absence. Photoelectric sensors do not work well in environments that have dirt, dust, or vibration. They also do not perform well with detecting clear or shiny objects.

Ultrasonic sensor

The ultrasonic sensor has an emitter that sends a sound wave at a frequency higher than what a human can hear to the receiver.  The two modes of an ultrasonic sensor include:

    • Echo mode, also known as a diffused mode, has an emitter and receiver built into the same unit. The object detection works with this mode is that the emitter sends out the sound wave, the wave then bounces off the target and returns to the receiver. The distance of an object can be determined by timing how long it takes for the sound wave to bounce back to the receiver.
    • The second type of mode is the opposed mode. The opposed mode has the emitter and receiver as two separate units. Object detection for this mode works by the emitter will be set up across from the receiver and will be sending sound waves continuously and an object will be detected once it breaks the field, similarly to how photoelectric sensors work.

Common applications for ultrasonic sensors include liquid level detection, uneven surface level detection, and sensing clear or transparent objects. They can also be used as substitutes for applications that are not suitable for photoelectric sensors.

Ultrasonic sensors do not work well, however, in environments that have foam, vapors, and dust. The reason for this is that ultrasonic uses sound waves need a medium, such as air, to travel through. Particles or other obstructions in the air interfere with the sound waves being produced. Also, ultrasonic sensors do not work in vacuums which don’t contain air.

Radar detection

Radar is a system composed of a transmitter, a transmitting antenna, a receiving antenna, a receiver, and a processor. It works like a diffuse mode ultrasonic sensor. The transmitter sends out a wave, the wave echoes off an object, and the receiver receives the wave. Unlike a sound wave, the radar uses pulsed or continuous radio waves. These wavelengths are longer than infrared light and can determine the range, angle, and velocity of objects. radar also has a processor that determines the properties of the object.

Common applications for radar include speed and distance detection, aircraft detection, ship detection, spacecraft detection, and weather formations. Unlike ultrasonic sensors, radar can work in environments that contain foam, vapors, or dust. They can also be used in vacuums. Radio waves are a form of electromagnetic waves that do not require a transmission medium to travel. An application in which radar does not perform well is detecting dry powders and grains. These substances have low dielectric constants, which are usually non-conductive and have low amounts of moisture.

Choosing from an ultrasonic sensor, photoelectric sensor, or radar comes down to the technology being used. LEDs are great at detecting part presences and absence of various sizes. Sound waves are readily able to detect liquid levels, uneven surfaces, and part presence. Electromagnetic waves can be used in environments that include particles and other substances in the air. It also works in environments where air is not present at all. One technology is not better than the other; each has its strengths and its weaknesses. Where one cannot work, the others typically can.

Capacitive, the Other Proximity Sensor

What is the first thing that comes to mind if someone says “proximity sensor?” My guess is the inductive sensor, and justly so because it is the most used sensor in automation today. There are other technologies that use the term proximity in describing the sensing mode, including diffuse or proximity photoelectric sensors that use the reflectivity of the object to change states and proximity mode of ultrasonic sensors that use high-frequency sound waves to detect objects. All these sensors detect objects that are in close proximity to the sensor without making physical contact. One of the most overlooked or forgotten proximity sensors on the market today is the capacitive sensor.

Capacitive sensors are suitable for solving numerous applications. These sensors can be used to detect objects, such as glass, wood, paper, plastic, or ceramic, regardless of material color, texture, or finish. The list goes on and on. Since capacitive sensors can detect virtually anything, they can detect levels of liquids including water, oil, glue, and so forth, and they can detect levels of solids like plastic granules, soap powder, sand, and just about anything else. Levels can be detected either directly, when the sensor touches the medium, or indirectly when it senses the medium through a non-metallic container wall.

Capacitive sensors overview

Like any other sensor, there are certain considerations to account for when applying capacitive, multipurpose sensors, including:

1 – Target

    • Capacitive sensors can detect virtually any material.
    • The target material’s dielectric constant determines the reduction factor of the sensor. Metal / Water > Wood > Plastic > Paper.
    • The target size must be equal to or larger than the sensor face.

2 – Sensing distance

    • The rated sensing distance, or what you see in a catalog, is based on a mild steel target that is the same size as the sensor face.
    • The effective sensing distance considers mounting, supply voltage, and temperature. It is adjusted by the integral potentiometer or other means.
    • Additional influences that affect the sensing distance are the sensor housing shape, sensor face size, and the mounting style of the sensor (flush, non-flush).

3 – Environment

    • Temperatures from 160 to 180°F require special considerations. The high-temperature version sensors should be used in applications above this value.
    • Wet or very humid applications can cause false positives if the dielectric strength of the target is low.
    • In most instances, dust or material buildup can be tuned out if the target dielectric is higher than the dust contamination.

4 – Mounting

    • Installing capacitive sensors is very similar to installing inductive sensors. Flush sensors can be installed flush to the surrounding material. The distance between the sensors is two times the diameter of the sensing distance.
    • Non-flush sensors must have a free area around the sensor at least one diameter of the sensor or the sensing distance.

5 – Connector

    • Quick disconnect – M8 or M12.
    • Potted cable.

6 – Sensor

    • The sensor sensing area or face must be smaller or equal to the target material.
    • Maximum sensing distance is measured on metal – reduction factor will influence all sensing distances.
    • Use flush versions to reduce the effects of the surrounding material. Some plastic sensors will have a reduced sensing range when embedded in metal. Use a flush stainless-steel body to get the full sensing range.

These are just a few things to keep in mind when applying capacitive sensors. There is not “a” capacitive sensor application – but there are many which can be solved cost-effectively and reliably with these sensors.

Looking Into & Through Transparent Material With Photoelectric Sensors

Advance automated manufacturing relies on sensor equipment to ensure each step of the process is done correctly, reliably, and effectively. For many standard applications, inductive, capacitive, or basic photoelectric sensors can do a fine job of monitoring and maintaining the automated manufacturing process. However, when transparent materials are the target, you need a different type of sensor, and maybe even need to think differently about how you will use it.

What are transparent materials?

When I think of transparent materials, water, glass, plexiglass, polymers, soaps, cooling agents, and packaging all come to mind. Because transparent material absorbs very little of the emitted red LED light, standard photoelectric sensors struggle on this type of application. If light can make its way back to the receiver, how can you tell if the beam was broken or not? By measuring the amount of light returned, instead of just if it is there or not, we can detect a transparent material and learn how transparent it is.

Imagine being able to determine proper mixes or thicknesses of liquid based on a transparency scale associated to a value of returned light. Another application that I believe a transparent material photoelectric senor would be ideal for is the thickness of a clear bottle. Imagine the wall thickness being crucial to the integrity of the bottle. Again, we would measure the amount of light allowed back to the receiver instead of an expensive measurement laser or even worse, a time-draining manual caliper.

Transparent material sensor vs. standard photoelectric sensor

So how does a transparent material sensor differ from a standard photoelectric sensor? Usually, the type of light is key. UV light is absorbed much greater than other wavelengths, like red or blue LEDs you find in standard photoelectric sensors. To add another level, you polarize that UV light to better control the light back into the receiver. Polarized UV light with a polarized reflector is the best combination. This can be done on a large or micro scale based on the sensor head size and build.

Uses for transparent material sensor include packaging trays, level tubes, medical tests, adhesive extrusion, and bottle fill levels, just to name a few. Transparent materials are everywhere, and the technology has matured. Make sure you are looking into specialized sensor technologies and working through best set-up practices to ensure reliable detection of transparent materials.

Why Use Ultrasonic Sensors?

by Nick Smith

When choosing what sensor to use in different applications, it is important to first look at how they operate. Capacitive sensors generate an electrical field that can detect various liquids or other materials, such as glass, wood, paper, ceramic, and more at a close. Photoelectric sensors emit a light beam that is either received by a light sensor or bounced back to the emitter to detect an object’s presence or measure the distance to an object. Ultrasonic sensors bounce a sound wave off objects to detect them, which can make them a good solution for a surprising variety of uses.

How ultrasonic sensors operate

Ultrasonic sensors operate by emitting an ultra-high frequency sound wave that ranges from 300 MHz to 3 GHz, which is well above the 15-17 kHz range that humans can hear that bounces off the target object. The sensor measures the amount of time that sound wave takes to return to calculate the distance to the object. Ultrasonic sensors send these sound waves in a wider beam than a photoelectric uses, so they can more easily detect objects in a dusty or dirty environment. And with a greater sensing distance than capacitive sensors, they can be installed at a safe distance and still function effectively

Common applications for ultrasonic sensors

These capabilities together make ultrasonic sensors a great choice for tasks like detecting fill level, stack height and object presence. Sound waves are unaffected by the color, transparency, or consistency of an object or liquid, which makes it an obvious contender in the packaging, food, and beverage industry and many other industries with similar manufacturing processes.

So to monitor glass bottles as they travel on a conveyor, an ultrasonic sensor could be a good choice. These sensors will consistently work well detecting clear or reflective materials such as water, paint, glass, etc., which can cause difficulties for photoelectric sensors. Another benefit of these sensors is the ability to mount them further away from their targets. For example, there are ultrasonics that can be mounted between 20 to 8000 mm away from the object. After tuning your setup, you can detect very small objects as easily as larger, more visible items.

Another common application for ultrasonic sensors is monitoring boxes. Properly implemented ultrasonic sensors can detect different sizes of boxes as they travel on a conveyor belt by constantly emitting and receiving sound waves. This means that each box or object will be measured by the sound wave. Different photoelectric and capacitive sensors may fail to detect the full presence of an object and may only be able to detect a specific point on an object.

When it comes to all types of different fill-level applications, there are many ways a sensor can monitor various liquids and solids. The width of an ultrasonic beam can be increased to detect a wider area of solid material in a hopper or decreased to give a precise measurement on liquid levels. This ability to detect a smaller or larger surface area gives the user more utility when deciding how to meet the requirements of an application. Although capacitive sensors can detect fill levels very precisely as well, factors like beam width and sensing distance might make ultrasonic a better choice.

With so many different sensor technologies available and factors like target material and sensing distance being such important factors, choosing the best sensor for an application can be demanding. A trusted expert who is familiar with these different technologies and the factors related to your applications and materials can help you confidently move toward the smart factory of the future.

Detecting Liquid Media and Bubbles Using Optical Sensors

In my line of work in Life Sciences, we often deal with liquid media and bubble detection evaluation through a vessel or a tube. This can be done by using the absorption principle or the refraction principle with through-beam-configured optical sensors. These are commonly embedded in medical devices or lab instruments.

This configuration provides strong benefits:

    • Precise sensing
    • Ability to evaluate liquid media
    • Detect multiple events
    • High reliability

How does it work?

The refraction principle is based on the media’s refraction index. It uses an emitted light source (Tx) that is angled to limit the light falling on the receiver (Rx, Figure 1). When the light passes through a liquid, refraction causes the light to focus on the receiver as a beam (known as a “beam-make” configuration). All liquids and common vessel materials (silicon, plastic, glass, etc.) have a known refraction index. These sensors will detect those refraction differences and output a signal.

The absorption principle is preferred when a media’s absorption index is high. First, a beam is established through a vessel or tube (Figure 2). Light sources in the 1500nm range work best for aqueous-based media such as water. As a high absorption index liquid enters the tube, it will block the light (known as a beam-break configuration). The sensor detects this loss of light.

Discrete on-off signals are easily used by a control system. However, by using the actual light value information (commonly analog), more data can be extracted. This is becoming more popular now and can be done with either sensing principle. By using this light-value information, you can differentiate between types of media, measure concentrations, identify multiple objects (e.g., filter in an IV and the media) and much more.

There is a lot to know about through-beam sensors, so please leave a comment below if you have questions on how you can benefit from this technology.

Fork Sensors, the Best Choice for Range, Reliability, Ease of Installation

Photoelectric sensors are a staple within many industries when it comes to automation thanks to their non-contact detection over longer ranges than many other sensing types. Also available in a variety of housing types and protection classes to meet the specific demands of an application, they offer manufacturers many different variants and models. The range of styles can make selecting the perfect photoelectric sensor for your specific application challenging. This post highlights the benefits of through-beam sensors and why fork sensors specifically, are often the ideal sensor for the job.

Through-beam sensors can detect anything, regardless of color, texture or reflectivity. This makes them highly efficient in any application where material or parts need to be detected during the process. They require an emitter and receiver. The emitter sends a light beam toward the receiver. When this light beam is blocked, the sensor will trigger. A common example of this is the sensor system on a garage door that detects obstructions and keeps the door from closing. (The software can also inverse this, so the sensor triggers when the light beam is not obstructed. Read more about these light-on/dark-on modes).

Traditional Through-Beams vs. Fork Sensors

Through-beam photoelectric sensors are simple technology that are non-contact, reliable and can operate over distances up to 100 meters, making them a go-to for many applications. But they aren’t without fault. Because the emitter and receiver are typically in separate housings, the two parts must line up perfectly to work. This alignment takes extra time during assembly and is prone to problems in the future if the emitter or receiver move,  even slightly. Machine vibrations can cause a misalignment.

Fork sensors, also called C slot or U slot sensors, incorporate both the emitter and the receiver into a single body, providing the benefits of a through-beam sensor without the installation issues.

This allows for reduced installation and maintenance time of the sensor in several ways:

    • Mounting a single sensor instead of two
    • Half as many cables needed for networking
    • No touchy alignment needed when installing the sensor
    • No maintenance needed re-aligning the sensors in the future

Photoelectric fork sensors come with sensing windows widths up to 220 mm and a range of light sources to accommodate many application needs. Check them out the next time you are considering a photoelectric sensor and see if they’re the best choice for your application.

Do Your Capacitive Sensors Ignore Foam & Condensation for True Level Detection?

Capacitive sensors detect any changes in their electrostatic sensing field. This includes not only the target material itself, but also application-induced influences such as condensation, foam, or temporary or permanent material build-up. High viscosity fluids can cause extensive delays in accurate point-level detection or cause complete failure due to the inability of a capacitive sensor to compensate for the material adhering to the container walls. In cases of low conductive fluids such as water or deionized water and relatively thin container walls, the user might be able to compensate for these sources of failure. Potential material build-up or condensation can be compensated for by adjusting the sensitivity of the sensor, cleaning of the container, or employing additional mechanical measures.

However, this strategy works only if the fluid conductivity stays low and no other additional influencing factors like temperature, material buildup, or filming challenge the sensor. Cleaning fluids like sodium hydrochloride, hydrochloric acid, chemical reagents, and saline solutions are very conductive, which cause standard capacitive sensors to false trigger on even the thinnest films or adherence. The same applies for bodily fluids such as blood, or concentrated acids or alkaline.

Challenges of this type of application are not obvious. This is especially true when the sensors performed well in the initial design phase but fail in the field for no obvious reason. An example of this would be when the sensors on the equipment are setup with deionized water however, the final process requires some type of acid  Difficult and time-consuming setup procedures and unstable applications requiring frequent readjustment are the primary reasons why capacitive level sensors have been historically avoided in certain applications.

Today, there are hybrid technologies employed in capacitive sensors for non-invasive level detection applications that would require little or no user adjustment after the initial setup process. They can detect any type conductive water based liquid through any non-metallic type of tank wall while automatically compensating for material build-up, condensation, and foam.

This hybrid sensing technology helps the sensors to distinguish effectively between true liquid levels and possible interferences caused by condensation, material build-up, or foaming fluids. While ignoring these interferences, the sensors still detect the relative change in capacitance caused by the media but use additional factors to evaluate the validity of the measurement taken before changing state. These sensors are fundamentally insensitive to any non-conductive material like plastic or glass, which allows them to be utilized in non-invasive level applications.

These capacitive sensors provide cost-effective, reliable point-level monitoring for a wide array of medical, biotechnology, life sciences, semiconductor processes, and other manufacturing processes and procedures. This technology brings considerable advantages to the area of liquid level detection, not only offering alternative machine designs, but also reduced assembly time for the machine builders.  Machine designers now have the flexibility to non-invasively detect almost any type of liquid through plastic, glass tubes, or other non-metallic container walls, reducing mechanical adaption effort and fabrication costs.

Discrete indication tasks like fluid presence detection in reagent supply lines, reagent bottle level feedback, chemical levels, and waste container overfill prevention are now a distinct competence for capacitive sensors. Reagents and waste liquids are composed of different formulas depending on the application.  The sensing technology has to be versatile enough to compensate automatically for changing environmental or media conditions within high tolerance limits. Applications that require precision and an extraordinary amount of reliability, such as blood presence detection in cardiovascular instruments or hemodialysis instruments, medical, pharmaceutical machine builders, equipment builders for semiconductor processes can rely now on these hybrid capacitive sensors