Do Your Capacitive Sensors Ignore Foam & Condensation for True Level Detection?

Capacitive sensors detect any changes in their electrostatic sensing field. This includes not only the target material itself, but also application-induced influences such as condensation, foam, or temporary or permanent material build-up. High viscosity fluids can cause extensive delays in accurate point-level detection or cause complete failure due to the inability of a capacitive sensor to compensate for the material adhering to the container walls. In cases of low conductive fluids such as water or deionized water and relatively thin container walls, the user might be able to compensate for these sources of failure. Potential material build-up or condensation can be compensated for by adjusting the sensitivity of the sensor, cleaning of the container, or employing additional mechanical measures.

However, this strategy works only if the fluid conductivity stays low and no other additional influencing factors like temperature, material buildup, or filming challenge the sensor. Cleaning fluids like sodium hydrochloride, hydrochloric acid, chemical reagents, and saline solutions are very conductive, which cause standard capacitive sensors to false trigger on even the thinnest films or adherence. The same applies for bodily fluids such as blood, or concentrated acids or alkaline.

Challenges of this type of application are not obvious. This is especially true when the sensors performed well in the initial design phase but fail in the field for no obvious reason. An example of this would be when the sensors on the equipment are setup with deionized water however, the final process requires some type of acid  Difficult and time-consuming setup procedures and unstable applications requiring frequent readjustment are the primary reasons why capacitive level sensors have been historically avoided in certain applications.

Today, there are hybrid technologies employed in capacitive sensors for non-invasive level detection applications that would require little or no user adjustment after the initial setup process. They can detect any type conductive water based liquid through any non-metallic type of tank wall while automatically compensating for material build-up, condensation, and foam.

This hybrid sensing technology helps the sensors to distinguish effectively between true liquid levels and possible interferences caused by condensation, material build-up, or foaming fluids. While ignoring these interferences, the sensors still detect the relative change in capacitance caused by the media but use additional factors to evaluate the validity of the measurement taken before changing state. These sensors are fundamentally insensitive to any non-conductive material like plastic or glass, which allows them to be utilized in non-invasive level applications.

These capacitive sensors provide cost-effective, reliable point-level monitoring for a wide array of medical, biotechnology, life sciences, semiconductor processes, and other manufacturing processes and procedures. This technology brings considerable advantages to the area of liquid level detection, not only offering alternative machine designs, but also reduced assembly time for the machine builders.  Machine designers now have the flexibility to non-invasively detect almost any type of liquid through plastic, glass tubes, or other non-metallic container walls, reducing mechanical adaption effort and fabrication costs.

Discrete indication tasks like fluid presence detection in reagent supply lines, reagent bottle level feedback, chemical levels, and waste container overfill prevention are now a distinct competence for capacitive sensors. Reagents and waste liquids are composed of different formulas depending on the application.  The sensing technology has to be versatile enough to compensate automatically for changing environmental or media conditions within high tolerance limits. Applications that require precision and an extraordinary amount of reliability, such as blood presence detection in cardiovascular instruments or hemodialysis instruments, medical, pharmaceutical machine builders, equipment builders for semiconductor processes can rely now on these hybrid capacitive sensors

Make Clear Water Visible to Your Sensors

In some industries such as life sciences it is necessary to detect clear water or clear liquids in a container or tube. This is even more challenging when the diameters of the tube are small, and the tube thickness is nearly as large as the stream of liquid.

The attenuation or gradual reduction of the intensity of the light beam in water and air can be directly compared. The attenuation of light in water can be attributed to light entering water at any angle other than at a right angle and can be refracted. The measurement of light through a tube is different because not only is the light attenuated by the liquid, but depending on where the light passes through the tube it can be refracted, diverted and or focused. As a result, the signal differences can be low.

Attenuation is typically the first choice if the liquids are opaque or colored. The requirements of the shape of the light beam and the alignment of the sensor add more complication to the application. The attenuation effect appears weaker in clear liquids. The principle does not work with reflective sensors since reflection is a surface effect and the light must pass through the liquid.OPTO_appl_08_sw-water

From spectral analysis it’s has been determined that the attenuation characteristics of water are heavily dependent on the wavelength of the light that is conducted through it. Sensors were developed for such applications. Typically, these sensors utilize LED’s in the upper infrared range of 1,450 nm. At this wavelength water literally absorbs the light and becomes opaque making detection more simplified and reliable.

This principle even works for fine capillaries and microchannels. Liquid detection can be very precise depending on the sensor size and the effective light beam. Light beams as small as 0.4mm can provide high resolution for small thin tubes typically found in microfluidics applications.

Versions of these sensors exist for applications that involve less transparent or semi-transparent vessels. Light at the 1450nm wavelength can pass through these containers or tubes and can be attenuated by the water. The main factor is that enough light makes its way through the walls of the container.

Through-beam sensors were developed for applications such as detecting clear liquids. These sensors are also available in extremely small dimensions and usually require an amplifier, or they can be supplied in a rugged fork sensor housing. The required sensor dimensions conform to the geometry of the vessel or container.

For more information on sensors for these types of applications contact your local Balluff representative or contact us at www.balluff.com.

Stacklights deliver versatile multi-status indication in real time

With advanced communication technology, stacklights can provide valuable information to operators and floor managers.

Rainer3It’s a new world for real-time, point-of-use information. Stacklights and indicators can provide much more feedback to operators and plant floor managers than ever before.

Using colored lights, stacklights can convey a wide range of information. While red, yellow, green and blue are the standard stacklight colors, a variety of other colors can be used to indicate specific conditions and needs.  It is important to develop a communication plan to clearly identifies what each color and flashing pattern represents.

Figure 1

Color overload can be a problem if not planned out properly. The best planning utilizes a dual color approach where colors are defined by personnel responsible and machine/process status at the point of use. An example would be yellow/blue indication wherein yellow = process slowdown and blue = line supervisor is responsible. This responsibility is clearly on the line supervisor to fix the slowdown at the point of indication. Flashing multiple colors is one method to dual color indication, but that has proven to be confusing. A much more intuitive approach is to segment the indicators based on your communication plan. Even small, point-of-use indicators can be segmented to exceed your goals.

OwnerWe have also seen customers mixing their own colors to achieve a level of differentiation. This differentiation could be simple appearance preference or adherence to their corporate color identity. All very achievable with the new class of smart, LED based stacklights and indicators.

By providing continuously variable information, also referred to as analog information, stacklights can be used to indicate current level status in tanks, hoppers, feeders, flow racks and so on. Continuously variable information is also ideal to use in pacing for operators in manual assembly areas. They can quickly see how much time each individual person has for their process step. If someone is struggling, others can visibly see the situation and step in and help.

2

Another popular use is simply displaying that the machine is in idle state, like the spinning icon on computers. This would typically suspend all other forms of indication.  Basically, it indicates the machine is not ready. The color indicators can be used as part of a communication plan to indicate the reason for the idle time and call for specific personnel to respond. As soon as the machine is ready, the indicators and stacklights revert to normal operations, just like your computer.

Stacklights can additionally provide operational status such as flow rates, pressure values and process speed.

To learn more about stacklights and indicators, visit www.balluff.com.

Reviewing options for optimized level detection in the food & beverage industry

Level detection plays an important role in the food and beverage industry, both in production and filling. Depending on the application, there are completely different requirements for level detection and, therefore, different requirements for the technologies and sensors to solve each task.

In general, we can differentiate between two requirements — Do I want to continuously monitor my filling level so that I can make a statement about the current level at any time? Or do I want to know if my filling level has reached the minimum or maximum?

Let’s look at both requirements and the appropriate level sensors and technologies in detail.

Precisely detecting point levels

For point level detection we have three different options.

A through-beam fork sensor on the outside of the tank is well suited for transparent container walls and very special requirements. Very accurate and easy to install, it is a good choice for critical filling processes while also being suitable for foaming materials.

Image 1
One point level detection through transparent container walls

For standard applications and non-metallic tank walls, capacitive sensors, which can be mounted outside the tank, are often the best choice. These sensors work by detecting the change of the relative electric permittivity. The measurement does not take place in direct contact with the medium.

Figure 2
Minimum/maximum level detection with capacitive sensors

For applications with metal tanks, there are capacitive sensors, which can be mounted inside the tank. Sensors, which meet the special requirements for cleanability (EHEDG, IP69K) and food contact material (FCM) required in the food industry,  are mounted via a thread and a sealing element inside the tank. For conductive media such as ketchup, specially developed level sensors can be used which ignore the adhesion to the active sensor surface.

Figure 3
Capacitive sensors mounted inside the tank

Continuous level sensing

Multiple technologies can be used for continuous level sensing as well. Choosing the best one depends on the application and the task.

Continuous level detection can also be solved with the capacitive principle. With the aid of a capacitive adhesive sensor, the level can be measured from the outside of the tank without any contact with the sensor. The sensor can be easily attached to the tank without the use of additional accessories. This works best for tanks up to 850 mm.

Figure 4
Continuous level detection with a capacitive sensor head

If you have fast and precise filling processes, the magnetostrictive sensing principle is the right choice. It offers very high measuring rate and accuracy. It can be used for tank heights from 200 mm up to several meters. Made especially for the food and beverage  industry, the sensor has the Ecolab, 3A and FDA certifications. Thanks to corrosion-free stainless steel, the sensor is safe for sterilization (SIP) and cleaning (CIP) in place.

Figure 5
Level detection via magnetostrictive sensing principle

If the level must be continuously monitored from outside the tank, hydrostatic pressure sensors are suitable. Available with a triclamp flange for hygienic demands, the sensor is mounted at the bottom of the tank and the level is indirectly measured through the pressure of the liquid column above the sensor.

Figure 6
Level detection via hydrostatic pressure sensor

Level detection through ultrasonic sensors is also perfect for the hygienic demands in the food industry. Ultrasonic sensors do not need a float, are non-contact and wear-free, and installation at the top of the tank is easy. Additionally, they are insensitive to dust and chemicals. There are even sensors available which can be used in pressurized tanks up to 6 bar.

Figure 7
Level detection via ultrasonic sensor

Product bundle for level monitoring in storage tanks

On occasion, both types of level monitoring are required. Take this example.

The tanks in which a liquid is stored at a food manufacturer are made of stainless steel. This means the workers are not able to recognize whether the tanks are full or empty, meaning they can’t tell when the tanks need to be refilled to avoid production downtime.

The solution is an IO-Link system which consists of different filling sensors and a light to visualize the filling level. With the help of a pressure sensor attached to the bottom of the tanks, the level is continuously monitored. This is visualized by a machine light so that the employee can see how full the tank is when passing by. The lights indicate when the tank needs to be refilled, while a capacitive sensor indicates when the tank is full eliminating overfilling and material waste.

Figure 8
Level monitoring in storage tanks

To learn more about solutions for level detection visit balluff.com

Back to the Basics: Object Detection

In the last post about the Basics of Automation, we discussed how humans act as a paradigm for automation. Now, let’s take a closer look at how objects can be detected, collected and positioned with the help of sensors.

Sensors can detect various materials such as metals, non-metals, solids and liquids, all completely without contact. You can use magnetic fields, light and sound to do this. The type of material you are trying to detect will determine the type of sensor technology that you will use.

Object Detection 1

Types of Sensors

  • Inductive sensors for detecting any metallic object at close range
  • Capacitive sensors for detecting the presence of level of almost any material and liquid at close range
  • Photoelectric sensors such as diffuse, retro-reflective or through-beam detect virtually any object over greater distances
  • Ultrasonic sensors for detecting virtually any object over greater distances

Different Sensors for Different Applications

The different types of sensors used will depend on the type of application. For example, you will use different sensors for metal detection, non-metal detection, magnet detection, and level detection.

Detecting Metals

If a workpiece or similar metallic objects Object Detection 2should be detected, then an inductive sensor is the best solution. Inductive sensors easily detect workpiece carriers at close range. If a workpiece is missing it will be reliably detected. Photoelectric sensors detect small objects, for example, steel springs as they are brought in for processing. Thus ensures a correct installation and assists in process continuity. These sensors also stand out with their long ranges.

Detecting Non-Metals

If you are trying to detect non-metal objects, for example, the height of paper stacks, Object Detection 3then capacitive sensors are the right choice. They will ensure that the printing process runs smoothly and they prevent transport backups. If you are checking the presence of photovoltaic cells or similar objects as they are brought in for processing, then photoelectic sensors would be the correct choice for the application.

Detecting Magnets

Object Detection 4

To make sure that blister packs are exactly positioned in boxes or that improperly packaged matches are sorted out, a magnetic field sensor is needed which is integrated into the slot. It detects the opening condition of a gripper, or the position of a pneumatic ejector.

 

Level Detection

What if you need to detect the level of granulate in containers? Then the solution is to use capacitive sensors. To accomplish this, two sensors are attached in the containers, offset from each other. A signal is generated when the minimum or maximum level is exceeded. This prevents over-filling or the level falling below a set amount. However, if you would like to detect the precise fill height of a tank without contact, then the solution would be to use an ultrasonic sensor.

Stay tuned for future posts that will cover the essentials of automation. To learn more about the Basics of Automation in the meantime, visit www.balluff.com.

Top 5 Automation Insights Posts from 2017

Kick off the New Year by taking a look at the top 5 Automation Insight blog posts from last year.

#5. Make sure your RFID system is future-proof by answering 3 questions

With the recent widespread adoption of RFID technology in manufacturing plants I have encountered quite a number of customers who feel like they have been “trapped” by the technology. The most common issue is their current system cannot handle the increase in the requirements of the production line. In a nutshell, their system isn’t scalable.5

Dealing with these issues after the fact is a nightmare that no plant manager wants to be a part of. Can you imagine installing an entire data collection system then having to remove it and replace it with a more capable system in 3 years or even less? It’s actually a pretty common problem in the world of technology. However, an RFID system should be viable for much longer if a few simple questions can be answered up front. Read more>>

#4. IO-Link Hydraulic Cylinder Position Feedback

Ready for a better mousetrap?  Read on…..

Some time ago here on Sensortech, we discussed considerations for choosing the right in-cylinder position feedback sensor.  In that article, we said:

“…….Analog 0-10 Vdc or 4-20 mA interfaces probably make up 70-80% of all in-cylinder feedback in use…..”

4

And while that 70-80% analog figure is still not too far off, we’re starting to see those numbers decline, in favor a of newer, more capable interface for linear position feedback:  IO-Link.  Much has been written, here on Sensortech and elsewhere, about the advantages offered by IO-Link.  But until now, those advantages couldn’t necessarily be realized in the world of hydraulic cylinder position feedback.  That has all changed with the availability of in-cylinder, rod-style magnetostrictive linear position sensors.  Compared to more traditional analog interfaces, IO-Link offers some significant, tangible advantages for absolute position feedback in hydraulic cylinders. Read More>>

#3. External Position Feedback for Hydraulic Cylinders

The classic linear position feedback solution for hydraulic cylinders is the rod-style magnetostrictive sensor installed from the back end of the cylinder. The cylinder rod is gun-drilled to accept the length of the sensor probe, and a target magnet is installed on the face of the piston. A hydraulic port on the end cap provides installation access to thread-in the pressure-rated sensor tube. This type of installation carries several advantages but also some potential disadvantages depending on the application. Read More>>

3

#2. 3 Smart Applications for Process Visualization

Stack lights used in today’s industrial automation haven’t changed their form or purpose for ages: to visually show the state (not status) of the work-cell. Since the introduction of SmartLight, I have seen customers give new2 meaning to the term “process visualization”. Almost every month I hear about yet another innovative use of the SmartLight. I thought capturing a few of the use-cases of the SmartLight here may help others to enhance their processes – hopefully in most cost effective manner.

The SmartLight may appear just like another stack-light.  The neat thing about it is that it is an IO-Link device and uses simply 3-wire smart communication on the same prox cable that is used for sensors in the field. Being an IO-Link device it can be programmed through the PLC or the controller for change of operation modes on demand, or change of colors, intensity, and beeping sounds as needed. What that means is it can definitely be used as a stack light but has additional modes that can be applied for all sorts of different operation/ process visualization tasks. Read More>>

#1. What is a Capacitive Sensor?

Capacitive proximity sensors are non-contact devices that can detect the presence or absence of virtually any object regardless of material.  1They utilize the electrical property of capacitance and the change of capacitance based on a change in the electrical field around the active face of the sensor.

A capacitive sensor acts like a simple capacitor.  A metal plate in the sensing face of the sensor is electrically connected to an internal oscillator circuit and the target to be sensed acts as the second plate of the capacitor.  Unlike an inductive sensor that produces an electromagnetic field a capacitive sensor produces an electrostatic field. Read More>>

Level Sensing in Machine Tools

Certainly the main focus in machine tools is on metal cutting or metal forming processes.

To achieve optimum results in cutting processes coolants and lubricants are applied. In both metal cutting and metal forming processes hydraulic equipment is used (as hydraulics create high forces in compact designs). For coolant, lubricant and hydraulic tanks the usage of level sensors to monitor the tank level of these liquids is required.

Point Level Sensing

For point level sensing (switching output) in many cases capacitive sensors are used. These sensors detect the change of the relative electric permittivity (typically a change of factor 10 from gas to liquid). The capacitive sensors may be mounted at the outside of the tank wall if the tank material is non metallic like e.g. plastic or glass. The installation may even be in retrofit applications yet limited to non metallic tanks up to a certain wall thickness.

When using metal tanks the capacitive sensors enter the inner area of the tank via a thread and a sealing component. Common thread sizes are: M12x1, M18x1, M30x1,5, G 1/4″, NPT 1/4″ etc. For conductive liquids specially designed capacitive level sensors may be used which ignore build up at the sensing surface.

Continuous Level Sensing

Advanced process control uses continuous level sensing principles. The continuous sensor signals e.g. 0..10V, 4…20mA or increasingly IO-Link deliver more information to better control the liquid level, especially relevant in dynamic or precise applications.

When using floats the magnetostrictive sensing principle offers very high resolution of the level value. Tank heights vary from typically 200 mm up to several meters. Another advantage of this sensor principle is the high update rate (supporting fast closed loop systems for level sensing)

In many applications the  requirements for the level control solutions are not too demanding. In these cases the ultrasonic principle has gained significant market share within the last years. Ultrasonic sensors do not need a float, installation on the top of the tank is pretty easy, there are even sensor types available which may be used in pressurized tanks (typically up to 6 bar). As ultrasonic sensors quite often are used in special applications, field tests during the design in process are recommended.

Finally hydrostatic pressure transducers are an option for level sensing when using non pressurized tanks (typically  connected to ambient pressure through a bore in the upper area of the tank). With the sensor mounted at the bottom of the tank the level is indirectly measured through the pressure of the liquid column above the sensor (e.g. 10m of water level resembles 1 bar).

Summary

Concerning level sensing in metalworking applications in the first step it should be decided whether point level sensing is sufficient or continuous level sensing is required. Having chosen continuous level sensing there are several sensor principles available (selection depending on the application needs and features of the liquids and tank properties). It is always a good engineering practice to prove the preselected sensing concept with field tests.

To learn more visit www.balluff.com

Level Detection Basics – Part 2

In the first blog on level detection we discussed containers and single point and continuous level sensing.  In this edition we will discuss invasive and non-invasive sensing methods and which sensing technologies apply to each version.  Keep in mind that when we are talking about level detection the media can be a liquid, semi-solid or solid with each presenting their own challenges.

tankInvasive or direct level sensing involves the sensing device being in direct contact to the media being sensed.  This means that the container walls or any piping must be violated leading to issue number one – leakage.  In some industries such as semiconductor and medical the sensing device cannot contact the media due to the possibility of contamination.

level_btl-sf-wThe direct mounting method could simplify sensor selection and setup since the sensor only has to sense the medium or target material properties.  Nonetheless, this approach imposes certain drawbacks, such as costs for mounting and sealing the sensor as well as the need to consider the material compatibility between the sensor and the medium.  Corrosive acids, for example, might require a more expensive exotic housing material.level_bsp_w

Invasive sensing technologies that would solve level sensing applications include capacitive, linear transducers, hydrostatic with pressure sensors.

In many cases the preferred approach is indirectly or non-invasively mounting the sensor on the outside of the container.  This sensing method requires the sensor to “see” through the container walls or by looking down at the media from above the container through an opening in the top of the container.  The advantages for this approach are easier mounting, lower cost and easier to field retro-fit.  The container wall does not have to be penetrated, which leaves the level sensor flexible and interchangeable in the application.  Avoiding direct contact with the target material also reduces the chances of product contamination, leaks, and other sources of risk to personnel and the environment.

level_bglIn some cases a sight glass is used which is mounted in the wall of the tank and as the liquid media rises it flows into the sight glass.  When using a sight glass a fork style photoelectric sensor can be used or a capacitive sensor can be strapped to the sight glass.

The media also has relevance in the sensor selection process.  Medical and semiconductor applications involve mostly water-based reagents, process fluids, acids, as well as different bodily fluids.  Fortunately, high conductivity levels and therefore high relative dielectric constants are common characteristics among all these liquids.  This is why the primary advantages of capacitive sensors lie in non-invasive liquid level detection, namely by creating a large measurement delta between the low dielectric container and the target material with high dielectric properties.  At the same time, highly conductivity liquids could impose a threat to the application.  This is because smaller physical amounts of material have a larger impact on the capacitive sensor with increasing conductivity values, increasing the risk of false triggering on foam or adherence to the inside or outside wall.

Non-invasive or indirect level sensing technologies include photoelectrics, capacitive, linear transducers with a sight glass and ultrasonics.

For more information visit www.balluff.com.

Level Detection Basics – Where to begin?

Initially I started to write this blog to compare photoelectric sensors to ultrasonic sensors for level detection. This came to mind after traveling around and visiting customers that had some very interesting applications. However, as I started to shed some light on this with photoelectrics, sorry for the pun but it was intended, I thought it might be better to begin with some application questions and considerations so that we have a better understanding of the advantages and disadvantages of solutions that are available. That being said I guess we will have to wait to hear about ultrasonic sensors until later…get it, another pun. Sorry.

Level detection can present a wide variety of challenges some easier to overcome than others. Some of the questions to consider include the following with some explanation for each:

  • What is the material of the container or vessel?
    • Metallic containers will typically require the sensor to look down to see the media. This application may be able to be solved with photoelectrics, ultrasonics, and linear transducers or capacitive (mounted in a tube and lowered into the media.
    • Smart LevelNon-metallic containers may provide the ability for the sensors look down to see the media with the same technologies mentioned above or by sensing through the walls of the container. Capacitive sensors can sense through the walls of a container up to 4mm thick with standard technology or up to 10mm thick using a hybrid capacitive technology offered by Balluff when detecting water based conductive materials. If the container is clear or translucent we have photoelectric sensors that can look through the side walls to detect the media.
  • What type of sensing is required? The short answer to this is level right? However, there are basically two different types of level detection. For more information on this refer to the Balluff Basics on Level Sensing – Discrete vs. Continuous.
    • Single point level or point level sensing. This is typically accomplished with a single sensor that allows for a discrete or an on-off signal when the level actuates the sensor. The sensor is mounted at the specific level to be monitored, for instance low-low, low, half full (the optimistic view), high, or high-high. These sensors are typically lower cost and easier to implement or integrate into the level controls.
    • Example of in-tank continuous level sensor
      Example of in-tank continuous level sensor

      Continuous or dynamic level detection. These sensors provide an analog or continuous output based on the level of the media. This level detection is used primarily in applications that require precise level or precision dispensing. The output signals are usually a voltage 0-10V or current output 4-20mA.  These sensors are typically higher cost and require more work in integrating them into system controls.  That being said, they also offer several advantages such as the ability to program in unlimited point levels and in the case of the current output the ability to determine if the sensor is malfunctioning or the wire is broken.

Because of the amount of information on level detection this will be the first in a series on this topic. In my next blog I will discuss invasive vs non-invasive mounting and some other topics. For more information visit www.balluff.com.

Direct vs Indirect Mounting of Capacitive Sensors

Direct sensing mount
Figure 1: Direct sensing mount

In liquid level sensing applications, capacitive sensors can be mounted directly in contact with the medium or indirectly with no contact to the medium.

Containers made of metal or very thick non-metallic tank walls (more than 1″) typically require mounting the sensor in direct contact with the medium (Fig. 1). In some instances, a by-pass tube or a sights glass is used, and the senor detects the level through the wall of the non-metallic tube (Fig. 2).

Indirect sensing mount
Figure 2: Indirect sensing mount

The direct mounting method could simplify sensor selection and setup since the sensor only has to sense the medium or target material properties. Nonetheless, this approach imposes certain drawbacks, such as costs for mounting and sealing the sensor as well as the need to consider the material compatibility between the sensor and the medium. Corrosive acids, for example, might require a more expensive exotic housing material.

ChemicalCompatibilityChart

The preferred approach is indirectly mounting the capacitive sensor flush against the non-metallic wall to detect the target material non-invasively through the container wall.  The advantages for this approach are obvious and represent a major influence to specify capacitive sensors.  The container wall does not have to be penetrated, which leaves the level sensor flexible and interchangeable in the application.  Avoiding direct contact with the target material also reduces the chances of product contamination, leaks, and other sources of risk to personnel and the environment.

The target material also has relevance in the sensor selection process.  Medical and semiconductor applications involve mostly water-based reagents, process fluids, acids, as well as different bodily fluids.  Fortunately, high conductivity levels and therefore high relative dielectric constants are common characteristics among all these liquids.  This is why the primary advantages of capacitive sensors lies in non-invasive liquid level detection, namely by creating a large measurement delta between the low dielectric container walls and the target material with high dielectric properties.

At the same time, highly conductivity liquids could impose a threat to the application.  This is because smaller physical amounts of material have a larger impact on the capacitive sensor with increasing conductivity values, increasing the risk of false triggering on foam or adherence to the inside or outside wall.  SMARTLEVEL sensors offered by Balluff will ignore foaming, filming and material build-up in these applications.

Learn more about Balluff’s capacitive solutions on our website at www.balluff.us.