Improve Your Feeder Bowl System (and Other Standard Equipment) with IO-Link

One of the most common devices used in manufacturing is the tried and true feeder bowl system. Used for decades, feeder bowls take bulk parts, orients them correctly and then feeds them to the next operation, usually a pick-and-place robot. It can be an effective device, but far too often, the feeder bowl can be a source of cycle-time slowdowns. Alerts are commonly used to signal when a feed problem is occurring but lack the exact cause of the slow down.

feeder bowl

A feed system’s feed rate can be reduced my many factors. Some of these include:

  • Operators slow to add parts to the bowl or hopper
  • Hopper slow to feed the bowl
  • Speeds set incorrectly on hopper, bowl or feed track
  • Part tolerance drift or feeder tooling out of adjustment

With today’s Smart IO-Link sensors incorporating counting and timing functions, most of the slow-down factors can be easily seen through an IIoT connection. Sensors can now time how long critical functions take. As the times drift from ideal, this information can be collected and communicated upstream.

A common example of a feed system slow-down is a slow hopper feed to the bowl. When using Smart IO-Link sensors, operators can see specifically that the hopper feed time is too long. The sensor indicates a problem with the hopper but not the bowl or feed tracks. Without IO-Link, operators would simply be told the overall feed system is slow and not see the real problem. This example is also true for the hopper in-feed (potential operator problem), feed track speed and overall performance. All critical operations are now visible and known to all.

For examples of Balluff’s smart IO-Link sensors, check out our ADCAP sensor.

Zone Defense: How to Determine If You Need a Hygienic or Washdown Solution

It goes without saying that food safety is an extremely important aspect of the food and beverage industry. While manufacturers would naturally take precautions to ensure their food products are safe to consume, they are required to follow a set of rigid guidelines and standards to ensure the safety of the foodstuffs to prevent contamination.

CaptureTo determine which rating, standards or certifications are required for a particular food and beverage segment, you must first consider the type of food contact zone and whether it is an open or closed process.

Food Contact Zones

The food contact zone is determined by the potential contamination that can occur based on the production equipment’s exposure to food and its byproducts.

  • Food Zone: an area intended to be exposed to direct contact with food or surfaces where food or other substances may contact and then flow, drain or drain back onto food or food contact surfaces.
  • Splash Zone: an area that is routinely exposed to indirect food contact due to splashes and spills. These areas are not intended for contact with consumable food.
  • Nonfood Zone: An area that is not exposed to food or splashes but will likely be exposed to minor dirt and debris.

Open and Closed Production

In the food and beverage industry, it is also important to discuss whether the manufacturing process is open or closed. The distinction between the two plays a significant role in determining machine cleaning requirements.

  • Closed Process: A manufacturing operation in which the food product never comes in contact with the environment. All food contact zones are sealed such as the inner surfaces of tanks, pipelines, valves, pumps and sensors.
  • Open Process: A manufacturing operation in which food does have contact with the environment outside of the machine. This requires a hygienic design of the process environment, as well as the surfaces of the apparatus and components.

Required ratings, standards and certifications

Once you know the food zone and whether the production is open or closed, it becomes simple to determine which ratings, standards or certifications are required of the machinery and apparatus in the food and beverage manufacturing process.

  • Food Contact Zone — Hygienic
    • IP69K – tested to be protected from high pressure steam cleaning per DIN40050 part 9
    • FDA – made of FDA approved materials, most often 316L stainless steel
    • 3-A – certified sanitary and hygienic equipment materials and design in the US
    • EHEDG – certified sanitary and hygienic equipment materials and design in Europe
  • Food Splash Zone — Washdown
    • IP69K – tested to be protected from high pressure steam cleaning per DIN40050 part 9
    • ECOLAB – surfaces tested to be protected from cleaning and disinfecting agents
  • Nonfood Zone — Factory Automation
    • IP67 – rated for water immersion up to a meter deep for half an hour
    • IP65 – rated as dust tight and protected against water projected from a nozzle

For more information on the requirements of the food and beverage industry, visit www.balluff.com.

Smart choices deliver leaner processes in Packaging, Food and Beverage industry

In all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

Take a look at how the Smart Factory can be implemented in Packaging, Food, and Beverage industries.

Updating Controls Architecture

  • Eliminates analog wiring and reduces costs by 15% to 20%
  • Simplifies troubleshooting
  • Enables visibility down to the sensor/device
  • Simplifies retrofits
  • Reduces terminations
  • Eliminates manual configuration of devices and sensors

Automating Guided Format Change and Change Parts

  • Eliminates changeover errors
  • Reduces planned downtime to perform change over
  • Reduces product waste from start-up after a change over
  • Consistent positioning every time
  • Ensures proper change parts are swapped out

Predictive Maintenance through IO-Link

  • Enhances diagnostics
  • Reduces unplanned downtime
  • Provides condition monitoring
  • Provides more accurate data
  • Reduces equipment slows and stops
  • Reduces product waste

Traceability

  • Delivers accurate data and reduced errors
  • Tracks raw materials and finished goods
  • Date and lot code accuracy for potential product recall
  • Allows robust tags to be embedded in totes, pallets, containers, and fixtures
  • Increases security with access control

Why is all of this important?

Converting a manufacturing process to a smart process will improve many aspects and cure pains that may have been encountered in the past. In the PFB industry, downtime can be very costly due to raw material having a short expiration date before it must be discarded. Therefore, overall equipment efficiency (OEE) is an integral part of any process within PFB. Simply put, OEE is the percentage of manufacturing time that is truly productive. Implementing improved controls architecture, automating change over processes, using networking devices that feature predictive maintenance, and incorporating RFID technology for traceability greatly improve OEE and reduce time spent troubleshooting to find a solution to a reoccurring problem.

Through IO-Link technology and smart devices connected to IO-Link, time spent searching for the root of a problem is greatly reduced thanks to continuous diagnostics and predictive maintenance. IO-Link systems alert operators to sensor malfunctions and when preventative maintenance is required.

Unlike preventative maintenance, which only captures 18% of machine failures and is based on a schedule, predictive maintenance relies on data to provide operators and controls personnel critical information on times when they may need to do maintenance in the future. This results in planned downtime which can be strategically scheduled around production runs, as opposed to unplanned downtime that comes with no warning and could disrupt a production run.

blog 2.20 1

Reducing the time it takes to change over a machine to a different packaging size allows the process to finish the batch quicker than if a manual change over was used, which in turn means a shorter production blog 2.20 2run for that line. Automated change over allows the process to be exact every time and eliminates the risk of operator error due to more accurate positioning.

 

 

blog 2.20 3Traceability using RFID can be a very important part of the smart PFB factory. Utilizing RFID throughout the process —tracking of raw materials, finished goods, and totes leaving the facility — can greatly increase the efficiency and throughput of the process. RFID can even be applied to change part detection to identify if the correct equipment is being swapped in or out during change over.

Adding smart solutions to a PFB production line improves efficiency, increases output, minimizes downtime and saves money.

For more information on the Smart Factory check out this blog post: The Need for Data and System Interoperability in Smart Manufacturing For a deeper dive into format change check out this blog post: Flexibility Through Automated Format Changes on Packaging Machines