IO-Link Safety: What It Is and Isn’t

Comparing “IO-Link” and “Safety” to “IO-Link Safety”

There are many I/O blocks that have “IO-Link” and “Safety” in their descriptions, which can cause some confusion about which safety features they include. Here’s an overview of different safety-named blocks and how they compare to IO-Link Safety.

Safety Network Blocks

These blocks have I/O ports that use Pin 4 and Pin 2 as OSSD signals (safety ports). OSSD—output switching signal devices—send 24-volt signals over two wires to confirm that a device is operating in a safe condition. If 0 volts are detected in either signal, besides their safety-checking 0-volt pulses, it’s read as a safety event that signals the machine to go into a safe state. Safety network blocks are only for standard (non-network) safety devices. These blocks communicate directly back to a Safety Controller over safety protocols like CIP Safety, PROFIsafe, etc. These blocks typically can monitor between 8-16 standard safety devices. There is no intelligence built into the safety devices.

Safety Network Blocks with IO-Link

Blocks in this category usually have a mixture of I/O ports on them. The ports can range from standard I/O to standard IO-Link communication, and in addition, include ports that use Pin 4 and Pin 2 as OSSD signals (safety ports). These blocks communicate over the safety protocols with only a few ports to connect standard (non-network) safety devices. There is some versatility with these blocks since you can wire standard sensors, IO-Link devices, and safety devices to it. The drawback is, you will always run short of the port style you need and, in the end, use more blocks to cover either the safety or IO-Link needs of the application. There is no intelligence built into the safety devices.

Safety over IO-Link Blocks

In this system/architecture, there are standard IO-Link Masters communicating to the Safety PLCs/Controllers over standard protocols like EtherNet/IP, PROFINET, etc. Connected to the IO-Link Ports of these Masters are Safety over IO-Link devices, currently limited to only Safety over IO-Link hubs. The Safety PLCs/Controllers communicate via safety protocols like PROFIsafe to the standard IO-Link Master, and then using the IO-Link communication channel, they bridge the gap to the Safety over the IO-Link hub via the “black channel.” These Safety over IO-Link hub’s ports use Pin 4 and Pin 2 as OSSD signals (safety ports), so standard (non-network) safety devices can be connected. This system provided a “gap filler” while IO-Link Safety was being developed. In this system/architecture, the standard IO-Link Masters allowed standard IO-Link devices and Safety over IO-Link hubs to be connected to any ports. This brought even more versatility to an application and the beginnings of the benefits of IO-Link. Still, there is no intelligence built into the safety devices.

IO-Link Safety

IO-Link Safety adds a safety communication layer to IO-Link. The difference between this and Safety over IO-Link is that this safety layer applies to both the IO-Link Master and IO-Link Safety devices. Within a CIP Safety or PROFIsafe network, the safety communication protocol has top priority over standard EtherNet/IP or PRIFONET data if both are existing on the same physical network. The same is true for IO-Link Safety: both standard and safety IO-Link protocols can exist on the same physical cable between the IO-Link Master ports and IO-Link Safety devices, with IO-Link Safety carrying the top priority. For a deep dive into the IO-Link Safety protocol, I suggest visiting the IO-Link Consortium’s website at io-link.com. In this system/architecture, you have IO-Link Safety Masters, which communicate to the Safety PLCs/Controllers over safety protocols like CIP Safety, PROFIsafe, etc. The ports on the Masters can utilize Pin 4 and Pin 2 as OSSD signals (safety ports), so standard (non-network) safety devices can be connected. Pin 4 can also be used to carry standard IO-Link and IO-Link Safety communication to standard IO-Link devices and IO-Link Safety devices, respectively. This allows for the most versatile safety solution in the market–IO-Link Safety Masters that can accept standard (non-network) safety devices, standard IO-Link devices, and IO-Link Safety devices. Intelligence in the IO-Link Safety devices is now available.

Benefits of IO-Link Safety

    • IO-Link Safety devices are fieldbus neutral: you just need to specify the IO-Link Safety Master to match the Safety PLCs/Controllers protocol.
    • IO-Link Safety Master port versatility: standard (non-network) safety devices, standard IO-Link devices, and IO-Link Safety devices can be connected.
    • Parameter storage: standard IO-Link and IO-Link Safety device’s parameters can be stored for ease of device replacement.
    • Smart IO-Link Safety device data: more data available, like internal temperature, humidity, number of cycles, power consumption, diagnostics, etc.
    • Simplified wiring: IO-Link Safety devices are still connected to the IO-Link Master port with a standard 3 to 4 conductor cable.
    • IIoT fit: IO-Link Safety gives more visibility to upper-level systems like SCADA, allowing safety device-level monitoring.

I am looking forward to seeing how quickly IO-Link Safety will be accepted, with how IO-Link numbers have skyrocketed over the last few years. The future looks great for IO-Link with IO-Link Safety, IO-Link Wireless and in the future, Single-Pair Ethernet (SPE). With all these new capabilities, what application can’t IO-Link support?

Weld Immune vs. Weld Field Immune: What’s the difference? 

In today’s automotive plants and their tier suppliers, the weld cell is known to be one of the most hostile environments for sensors. Weld slag accumulation, elevated ambient temperatures, impacts by moving parts, and strong electromagnetic fields can all degrade sensor performance and cause false triggering. It is widely accepted that sensors will have a limited life span in most plants.

Poor sensor selection does mean higher failure rates which cause welders in all industries increased downtime, unnecessary maintenance, lost profits, and delayed delivery. There are many sensor features designed specifically to withstand these harsh welding environments and the problems that come along with them to combat this.

In the search for a suitable sensor for your welding application, you are sure to come across the terms weld immune and weld field immune. What do these words mean? Are they the same thing? And will they last in my weld cell?

Weld Immune ≠ Weld Field Immune

At first glance, it is easy to understand why someone may confuse these two terms or assume they are one and the same.

Weld field immune is a specific term referring to sensors designed to withstand strong electromagnetic fields. In some welding areas, especially very close to the weld gun, welders can generate strong magnetic fields. When this magnetic field is present, it can cause a standard sensor to perform intermittently, like flickering and false outputs.

Weld field immune sensors have special filtering and robust circuitry that withstand the influence of strong magnetic fields and avoid false triggers. This is also called magnetic field immune since they also perform well in any area with high magnetic noise.

On the other hand, weld immune is a broad term used to describe a sensor designed with any features that increase its performance in a welding application. It could refer to one or multiple sensor features, including:

    • Weld spatter resistant coatings
    • High-temperature resistance
    • Different housing or sensor face materials
    • Magnetic field immunity

A weld field immune sensor might be listed with the numerous weld immune sensors with special coatings and features, but that does not necessarily mean any of those other sensors are immune to weld fields. This is why it is always important to check the individual sensor specifications to ensure it is suitable for your application.

In an application where a sensor is failing due to impact damage or weld slag spatter, a steel face sensor with a weld resistant coating could be a great solution. If this sensor isn’t close to the weld gun and isn’t exposed to any strong magnetic fields, there is really no need for it to be weld field immune. The important features are the steel face and coating that can protect it against impact and weld slag sticking to it. This sensor would be classified as weld immune.

In another application where a sensor near the weld gun side of the welding procedure where MIG welding is performed, this location is subject to arc blow that can create a strong magnetic field at the weld wire tip location. In this situation, having a weld field immune sensor would be important to avoid false triggers that the magnetic field may cause. Additionally, being close to a MIG weld gun, it would also be wise to consider a sensor with other weld immune properties, like a weld slag resistant coating and a thermal barrier, to protect against high heat and weld slag.

Weld field immunity is just one of many features you can select when picking the best sensor for your application. Whether the issue is weld slag accumulation, elevated ambient temperatures, part impact, or strong electromagnetic fields, there are many weld immune solutions to consider. Check the placement and conditions of the sensors you’re using to decide which weld-immune features are needed for each sensor.

Click here for more on choosing the right sensor for your welding application.

 

Does Your Stamping Department Need a Checkup? Try a Die-Protection Risk Assessment

If you have ever walked through a stamping department at a metal forming facility, you have heard the rhythmic sound of the press stamping out parts, thump, thump. The stamping department is the heart manufacturing facility, and the noise you hear is the heartbeat of the plant. If it stops, the whole plant comes to a halt. With increasing demands for higher production rates, less downtime, and reduction in bad parts, stamping departments are under ever-increasing pressure to optimize the press department through die protection and error-proofing programs.

The die-protection risk assessment team

The first step in implementing or optimizing a die protection program is to perform a die-protection risk assessment. This is much like risk assessments conducted for safety applications, except they are done for each die set. To do this, build a team of people from various positions in the press department like tool makers, operators, and set-up teams.

Once this team is formed, they can help identify any incidents that could occur during the stamping operations for each die set and determine the likelihood and the severity of possible harm. With this information, they can identify which events have a higher risk/severity and determine what additional measures they should implement to prevent these incidents. An audit is possible even if there are already some die protection sensors in place to determine if there are more that should be added and verify the ones in place are appropriate and effective.

The top 4 die processes to check

The majority of quality and die protection problems occur in one of these three areas: material feed, material progression, and part- and slug-out detections. It’s important to monitor these areas carefully with various sensor technologies.

Material feed

Material feed is perhaps the most critical area to monitor. You need to ensure the material is in the press, in the correct location, and feeding properly before cycling the press. The material could be feeding as a steel blank, or it could come off a roll of steel. Several errors can prevent the material from advancing to the next stage or out of the press: the feed can slip, the stock material feeding in can buckle, or scrap can fail to drop and block the strip from advancing, to name a few. Inductive proximity sensors, which detect iron-based metals at short distances, are commonly used to check material feeds.

Material progression

Material progression is the next area to monitor. When using a progressive die, you will want to monitor the stripper to make sure it is functioning and the material is moving through the die properly. With a transfer die, you want to make sure the sheet of material is nesting correctly before cycling the press. Inductive proximity sensors are the most common sensor used in these applications, as well.

Here is an example of using two inductive proximity sensors to determine if the part is feeding properly or if there is a short or long feed. In this application, both proximity sensors must detect the edge of the metal. If the alignment is off by just a few millimeters, one sensor won’t detect the metal. You can use this information to prevent the press from cycling to the next step.

Short feed, long feed, perfect alignment

Part-out detection

The third critical area that stamping departments typically monitor is part-out detection, which makes sure the finished part has come out of the stamping

area after the cycle is complete. Cycling the press and closing the tooling on a formed part that failed to eject can result in a number of undesirable events, like blowing out an entire die section or sending metal shards flying into the room. Optical sensors are typically used to check for part-out, though the type of photoelectric needed depends on the situation. If the part consistently comes out of the press at the same position every time, a through-beam photo-eye would be a good choice. If the part is falling at different angles and locations, you might choose a non-safety rated light grid.

Slug-ejection detection

The last event to monitor is slug ejection. A slug is a piece of scrap metal punched out of the material. For example, if you needed to punch some holes in metal, the slug would be the center part that is knocked out. You need to verify that the scrap has exited the press before the next cycle. Sometimes the scrap will stick together and fail to exit the die with each stroke. Failure to make sure the scrap material leaves the die could affect product quality or cause significant damage to the press, die, or both. Various sensor types can ensure proper scrap ejection and prevent crashes. The picture below shows a die with inductive ring sensors mounted in it to detect slugs as they fall out of the die.

Just like it is important to get regular checkups at the doctor, performing regular die-protection assessments can help you make continuous improvements that can increase production rates and reduce downtime. Material feed, material progression, part-out and slug-out detection are the first steps to optimize, but you can expand your assessments to include areas like auxiliary equipment. You can also consider smart factory solutions like intelligent sensors, condition monitoring, and diagnostics over networks to give you more data for preventative maintenance or more advanced error-proofing. The key to a successful program is to assemble the right team, start with the critical areas listed above, and learn about new technologies and concepts that are becoming available to help you plan ways to improve your stamping processes.

Add Depth to Your Processes With 3D Machine Vision

What comes to mind first when you think of 3D? Cheap red and blue glasses? Paying extra at a movie theater? Or maybe the awkward top screen on a Nintendo 3DS? Neither industrial machine vision nor robot guidance likely come to mind, but they should.

Advancements in 3D machine vision have taken the old method of 2D image processing and added literal depth. You become emerged into the application with true definition of the target—far from what you get looking at a flat image.

See For Yourself

Let’s do an exercise: Close one eye and try to pick up an object on your desk by pinching it. Did you miss it on the first try? Did things look foreign or off? This is because your depth perception is skewed with only one vision source. It takes both eyes to paint an accurate picture of your surroundings.

Now, imagine what you can do with two cameras side by side looking at an application. This is 3D machine vision; this is human.

How 3D Saves the Day

Robot guidance. The goal of robotics is to emulate human movements while allowing them to work more safely and reliably. So, why not give them the same vision we possess? When a robot is sent in to do a job it needs to know the x, y and z coordinates of its target to best control its approach and handle the item(s). 3D does this.

Part sorting. If you are anything like me, you have your favorite parts of Chex mix. Whether it’s the pretzels or the Chex pieces themselves, picking one out of the bowl takes coordination. Finding the right shape and the ideal place to grab it takes depth perception. You wouldn’t use a robot to sort your snacks, of course, but if you need to select specific parts in a bin of various shapes and sizes, 3D vision can give you the detail you need to select the right part every time.

Palletization and/or depalletization. Like in a game of Jenga, the careful and accurate stacking and removing of parts is paramount. Whether it’s for speed, quality or damage control, palletization/ depalletization of material needs 3D vision to position material accurately and efficiently.

I hope these 3D examples inspire you to seek more from your machine vision solution and look to the technology of the day to automate your processes. A picture is worth a thousand words, just imagine what a 3D image can tell you.

RFID for Improved Operator Accountability

One of the most fascinating parts of my job is making site visits to manufacturing plants across the country. Getting a first-hand look at how things are made in a modern manufacturing facility is nothing short of amazing. Robots whirling, automatic guided vehicles (AGV’s) navigating the floor, overhead cranes and gantries lifting tons of material over-head, flames shooting from ovens, and metal chips flying create an exciting, but sometimes dangerous, work environment. To some people this may seem like a good reason to avoid these places, but if you are fitted with the appropriate personal protective equipment (PPE) the chances for injury are minimal.

The safety of every human in the plant is the top priority.  This is why there are requirements to wear PPE that is suitable for the environment and the hazards within. The challenge is confirming that everyone is aware of the required equipment, and that they indeed are wearing that equipment.

This can be accomplished with a simple RFID kiosk system. When an operator scans their ID they are asked a series of questions to ensure they are wearing the correct PPE. If the operator confirms they are wearing all the required gear, they can begin work in the area they are assigned. If not, a supervisor will be notified so the correct equipment can be obtained. This method can serve as a daily reminder for what needs to be worn while holding the operator accountable.

Ultimately, it is up to the plant and occupational safety organizations to define what needs to be worn and where it should be worn, but it is the responsibility of the operator to actually wear it. The same system can be used for vendors, visitors or anyone else who ventures out on the plant floor.

Sensor and Device Connectivity Solutions For Collaborative Robots

Sensors and peripheral devices are a critical part of any robot system, including collaborative applications. A wide variety of sensors and devices are used on and around robots along with actuation and signaling devices. Integrating these and connecting them to the robot control system and network can present challenges due to multiple/long cables, slip rings, many terminations, high costs to connect, inflexible configurations and difficult troubleshooting. But device level protocols, such as IO-Link, provide simpler, cost-effective and “open” ways to connect these sensors to the control system.

Just as the human body requires eyes, ears, skin, nose and tongue to sense the environment around it so that action can be taken, a collaborative robot needs sensors to complete its programmed tasks. We’ve discussed the four modes of collaborative operation in previous blogs, detailing how each mode has special safety/sensing needs, but they have common needs to detect work material, fixtures, gripper position, force, quality and other aspects of the manufacturing process. This is where sensors come in.

Typical collaborative robot sensors include inductive, photoelectric, capacitive, vision, magnetic, safety and other types of sensors. These sensors help the robot detect the position, orientation, type of objects, and it’s own position, and move accurately and safely within its surroundings. Other devices around a robot include valves, RFID readers/writers, indicator lights, actuators, power supplies and more.

The table, below, considers the four collaborative modes and the use of different types of sensors in these modes:

Table 1.JPG

But how can users easily and cost-effectively connect this many sensors and devices to the robot control system? One solution is IO-Link. In the past, robot users would run cables from each sensor to the control system, resulting in long cable runs, wiring difficulties (cutting, stripping, terminating, labeling) and challenges with troubleshooting. IO-Link solves these issues through simple point-to-point wiring using off-the-shelf cables.

Table 2.png

Collaborative (and traditional) robot users face many challenges when connecting sensors and peripheral devices to their control systems. IO-Link addresses many of these issues and can offer significant benefits:

  • Reduced wiring through a single field network connection to hubs
  • Simple connectivity using off-the-shelf cables with plug connectors
  • Compatible will all major industrial Ethernet-based protocols
  • Easy tool change with Inductive Couplers
  • Advanced data/diagnostics
  • Parametarization of field devices
  • Faster/simpler troubleshooting
  • Support for implementation of IIoT/Industry 4.0 solutions

IO-Link: an excellent solution for simple, easy, fast and cost-effective device connection to collaborative robots.

Power & Force Limiting Cobots for Dull, Dirty and Dangerous Applications

Collaborative robots, or cobots, is currently one of the most exciting topics in automation. But what do people mean when they say “collaborative robot”? Generally, they are talking about robots which can safely work near and together with humans. The goal of a collaborative robot system is to optimize the use of humans and robots, building on the capabilities of each.

There are four modes of robot collaborative operation defined by the global standard ISO/TS 15066. We discussed these modes in a previous blog, Robot Collaborative Operation.

This post will go more deeply into the most commonly used mode: power & force limiting. Robots in this category include ones made by Universal Robots, as well as FANUC’s green robots and ABB’s Yumi.

What is power & force limiting?

Power & force limiting robots are designed with limited power and force, along with physical features to avoid or reduce injury or damage in case of contact. These robots are generally smaller, slower and less powerful than traditional robots but also more flexible and able to work near or with humans — assuming a risk assessment determines it is safe to do so.

The standards define the creation of a shared or collaborative work space for the robot and human, and define how they may interact in this space. In a power & force limiting application, the robot and operator can be in the shared/collaborative work space at the same time and there may be contact or collision between the operator and the collaborative robot system (which includes the robot, gripper/tool and work piece). Under the proper conditions the features built into the power & force limiting robot allow this close interaction and contact to occur without danger to the operator.

What technologies allow these robots to work closely with humans?

The limiting of the robot’s force can be implemented in several ways. Internal torque/feedback sensors in the joints, external sensors or “skins” and/or elastic joints are some of the methods robot suppliers use to assure low force or low impact. They also design possible contact areas to avoid injury or damage by using rounded edges, padding, large surface areas, etc. to soften contact. Grippers, tools and work pieces also need to be considered and designed to avoid injury or damage to people and equipment.

Peripherally, additional sensors in the robots, grippers, tools, work holders and surrounding work stations are critical parts of high performance robot applications. Connecting these sensors through protocols such as IO-Link and PROFISafe Over IO-Link allows more tightly integrated, better performing, and safer collaborative robot systems.

Where are power & force limiting robots typically applied?

Similar to traditional robots, power & force limiting robots are best applied in applications which are dull, dirty and/or dangerous (the 3 Ds of robotics). They are especially well suited to applications where the danger is ergonomic — repetitive tasks which cause strain on an operator. In many cases, power & force limiting robots are being applied to cooperate closely with people: the robots take on the repetitive tasks, while the humans take on the tasks which require more cognitive skills.

A large number of the customers for power & force limiting robots are small or medium-sized enterprises which can not afford the investment and time to implement a traditional robot, but find that power & force limiting robots fit within their budget and technical capabilities.

What are some of the benefits and drawbacks to power & force limiting robots?

Benefits:

  • Low cost
  • Fast, simple programming and set up; often does not require special knowledge or training
  • Small and lightweight
  • Easy to deploy and redeploy
  • Can be fenceless
  • Low power usage
  • Close human-robot interaction

Drawbacks:

  • Slow
  • Small payload
  • Low force
  • Low precision (not always the case, and improving)

Final Thoughts

Buying a power & force limiting robot does not necessarily mean that fences or other safeguards can be removed; a risk assessment must be completed in order to ensure the application is appropriately safeguarded. The benefits, however, can be significant, especially for smaller firms with limited resources. These firms will find that power & force limiting robots are very good at cost-effectively solving many of their dull, dirty and dangerous applications.

The Emergence of Device-level Safety Communications in Manufacturing

Manufacturing is rapidly changing, driven by trends such as low volume/high mix, shorter lifecycles, changing labor dynamics and other global factors. One way industry is responding to these trends is by changing the way humans and machines safely work together, enabled by updated standards and new technologies including safety communications.

In the past, safety systems utilized hard-wired connections, often resulting in long cable runs, large wire bundles, difficult troubleshooting and inflexible designs. The more recent shift to safety networks addresses these issues and allows fast, secure and reliable communications between the various components in a safety control system. Another benefit of these communications systems is that they are key elements in implementing the Industrial Internet of Things (IIoT) and Industry 4.0 solutions.

Within a typical factory, there are three or more communications levels, including an Enterprise level (Ethernet), a Control level (Ethernet based industrial protocol) and a Device/sensor level (various technologies). The popularity of control and device level industrial communications for standard control systems has led to strong demand for similar safety communications solutions.

Safety architectures based on the most popular control level protocols are now common and often reside on the same physical media, thereby simplifying wiring and control schemes. The table, below, includes a list of the most common safety control level protocols with their Ethernet-based industrial “parent” protocols and the governing organizations:

Ethernet Based Safety Protocol Ethernet Based Control Protocol Governing Organization
CIP Safety Ethernet IP Open DeviceNet Vendor Association (ODVA)
PROFISafe PROFINET PROFIBUS and PROFINET International (PI)
Fail Safe over EtherCAT (FSoE) EtherCAT EtherCAT Technology Group
CC-Link IE Safety CC-Link IE CC-Link Partner Association
openSAFETY Ethernet POWERLINK Ethernet POWERLINK Standardization Group (EPSG)

 

These Ethernet-based safety protocols are high speed, can carry fairly large amounts of information and are excellent for exchanging data between higher level devices such as safety PLCs, drives, CNCs, HMIs, motion controllers, remote safety I/O and advanced safety devices. Ethernet is familiar to most customers, and these protocols are open and supported by many vendors and device suppliers – customers can create systems utilizing products from multiple suppliers. One drawback, however, is that devices compatible with one protocol are not compatible with other protocols, requiring vendors to offer multiple communication connection options for their devices. Other drawbacks include the high cost to connect, the need to use one IP address per connected device and strong influence by a single supplier over some protocols.

Device level safety protocols are fairly new and less common, and realize many of the same benefits as the Ethernet-based safety protocols while addressing some of the drawbacks. As with Ethernet protocols, a wide variety of safety devices can be connected (often from a range of suppliers), wiring and troubleshooting are simplified, and more data can be gathered than with hard wiring. The disadvantages are that they are usually slower, carry much less data and cover shorter distances than Ethernet protocols. On the other hand, device connections are physically smaller, much less expensive and do not use up IP addresses, allowing the integration into small, low cost devices including E-stops, safety switches, inductive safety sensors and simple safety light curtains.

Device level Safety Protocol Device level Standard Protocol Open or Proprietary Governing Organization
Safety Over IO-Link/IO-Link Safety* IO-Link Semi-open/Open Balluff/IO-Link Consortium
AS-Interface Safety at Work (ASISafe) AS-Interface (AS-I) Open AS-International
Flexi Loop Proprietary Sick GmbH
GuardLink Proprietary Rockwell Automation

* Safety Over IO-Link is the first implementation of safety and IO-Link. The specification for IO-Link Safety was released recently and devices are not yet available.

The awareness of, and the need for, device level safety communications will increase with the desire to more tightly integrate safety and standard sensors into control systems. This will be driven by the need to:

  • Reduce and simplify wiring
  • Add flexibility to scale up, down or change solutions
  • Improve troubleshooting
  • Mix of best-in-class components from a variety of suppliers to optimize solutions
  • Gather and distribute IIoT data upwards to higher level systems

Many users are realizing that neither an Ethernet-based safety protocol, nor a device level safety protocol can meet all their needs, especially if they are trying to implement a cost-effective, comprehensive safety solution which can also support their IIoT needs. This is where a safety communications master (or bridge) comes in – it can connect a device level safety protocol to a control level safety protocol, allowing low cost sensor connection and data gathering at the device level, and transmission of this data to the higher-level communications and control system.

An example of this architecture is Safety Over IO-Link on PROFISafe/PROFINET. Devices such as safety light curtains, E-stops and safety switches are connected to a “Safety Hub” which has implemented the Safety Over IO-Link protocol. This hub communicates via a “black channel” over a PROFINET/IO-Link Master to a PROFISafe PLC. The safety device connections are very simple and inexpensive (off the shelf cables & standard M12 connectors), and the more expensive (and more capable) Ethernet (PROFINET/PROFISafe) connections are only made where they are needed: at the masters, PLCs and other control level devices. And an added benefit is that standard and safety sensors can both connect through the PROFINET/IO-Link Master, simplifying the device level architecture.

Safety

Combining device level and control level protocols helps users optimize their safety communications solutions, balancing cost, data and speed requirements, and allows IIoT data to be gathered and distributed upwards to control and MES systems.

 

Connecting Safety Devices to a Safety Hub

Safety device users face a dilemma when selecting safety components: They want to create a high-performance system, using best-in-class parts, but this often means buying from multiple suppliers. Connecting these devices to the safety control system to create an integrated system can be complicated and may require different cabling/wiring configurations, communications interfaces and/or long, hardwired cables.

Device-Level Protocols

One solution, discussed in a previous blog on industrial safety protocols, is to connect devices to an open, device-level protocol such as Safety Over IO-Link or AS-i Safety At Work. These protocols offer a simple way to connect devices from various suppliers using non-proprietary technologies. Both Safety Over IO-Link and AS-i Safe offer modules to which many third party devices can be connected.

Connecting to a Safety HubSafety-Arch_012518

The simplest way to connect to a safety hub/module is to buy compatible products from the hub supplier. Many safety block/hub suppliers also offer products such as E-stops, safety light curtains, door switches, inductive safety sensors and guard locking switches which may provide plug & plug solutions. There are, however, also many third party devices which can also be easily connected to some of these hubs. Hubs which are AIDA (Automation Initiative of German Domestic Automobile manufacturers) compliant allow connection of devices which are compatible with this standard. Generally, these devices have M12 connectors with 4, 5 or 8 pins, and the power, signal and ground pins are defined in the AIDA specifications. Most major safety device manufacturers offer at least one variant of their main products lines, which are AIDA pin-compatible.

AIDA/Safety Hub Compatible Devices

Some suppliers have lists of devices which meet the M12 pin/connector AIDA specification and may be connected to AIDA compatible modules. Note that not all the listed safety devices may have been tested with the safety blocks/hubs, but their specifications match the requirements. AIDA compatible devices have been identified from all major safety suppliers including Balluff, Rockwell, Sick, Schmersal, Banner, Euchner and Omron STI; and range from safety light curtains to door switches to E-stop devices.

Easy Connection

While some manufacturers prefer to focus on locking customers into a single supplier solution, many users want to combine devices from multiple suppliers in a best-in-class solution. Selecting a safety I/O block or hub which supports AIDA compatible devices makes it fast and easy to connect a wide range of these devices to create the safety system that is the best solution for your application.

Industrial Safety Protocols

There are typically three or more communication levels in the modern factory which consist of:

  • Enterprise level (Ethernet)
  • Control level (Ethernet based industrial protocol)
  • Device/sensor level (various technologies)

IO-Link

The widespread use of control and device level communications for standard (non-safety) industrial applications led to a desire for similar communications for safety. We now have safety versions of the most popular industrial control level protocols, these make it possible to have safety and standard communications on the same physical media (with the appropriate safety hardware implemented for connectivity and control). In a similar manner, device level safety protocols are emerging to allow standard and safety communications over the same media. Safety Over IO-Link and AS-i Safety At Work are two examples.

This table lists the most common safety control level protocols with their Ethernet-based industrial “parent” protocols and the governing organizations:

chart1

And this table lists some of the emerging, more well-known, safety device level protocols with their related standard protocols and the governing or leading organizations:

Chart2
* Safety Over IO-Link is the first implementation of safety and IO-Link. The specification for IO-Link Safety was released recently and devices are not yet available.

Ethernet-based safety protocols are capable of high speed and high data transmission, they are ideal for exchanging data between higher level devices such as safety PLCs, drives, CNCs, HMIs, motion controllers, remote safety I/O and advanced safety devices. Device level protocol connections are physically smaller, much less expensive and do not use up IP addresses, but they also carry less data and cover shorter distances than Ethernet based protocols. They are ideal for connecting small, low cost devices such as E-stops, safety switches and simple safety light curtains.

As with standard protocols, neither a control level safety protocol, nor a device level safety protocol can meet all needs, therefore cost/performance considerations drive a “multi-level” communications approach for safety. This means a combined solution may be the best fit for many safety and standard communications applications.

A multi-level approach has many advantages for customers seeking a cost-effective, comprehensive safety and standard control and device solution which can also support their IIoT needs. Users can optimize their safety communications solutions, balancing cost, data and speed requirements.