How TSN boosts efficiency by setting priorities for network bandwidth

As manufacturers move toward Industry 4.0 and the Industrial Internet of Things (IIoT), common communication platforms are needed to achieve the next level of efficiency boost. Using common communication platforms, like Time-Sensitive Networking (TSN), significantly reduces the burden of separate networks for IT and OT without compromising the separate requirements from both areas of the plant/enterprise.

TSN is the mother of all network protocols. It makes it possible to share the network bandwidth wisely by allocating rules of time sensitivity. For example, industrial motion control related communication, safety communication, general automation control communication (I/O), IT software communications, video surveillance communication, or Industrial vision system communication would need to be configured based on their time sensitivity priority so that the network of switches and communication gateways can effectively manage all the traffic without compromising service offerings.

If you are unfamiliar with TSN, you aren’t alone. Manufacturers are currently in the early adopter phase. User groups of all major industrial networking protocols such as ODVA (CIP and EtherNet/IP), PNO (for PROFINET and PROFISAFE), and CLPA (for CC-Link IE) are working toward incorporating TSN abilities in their respective network protocols. CC-Link IE Field has already released some of the products related to CC-Link IE Field TSN.

With TSN implementation, the current set of industrial protocols do not go away. If a machine uses today’s industrial protocols, it can continue to use that. TSN implementation has some gateway modules that would allow communicating the standard protocols while adding TSN to the facility.

While it would be optimal to have one universal protocol of communication across the plant floor, that is an unlikely scenario. Instead, we will continue to see TSN flavors of different protocols as each protocol has its own benefits of things it does the best. TSN allows for this co-existence of protocols on the same network.

 

Connecting Safety Devices to a Safety Hub

Safety device users face a dilemma when selecting safety components: They want to create a high-performance system, using best-in-class parts, but this often means buying from multiple suppliers. Connecting these devices to the safety control system to create an integrated system can be complicated and may require different cabling/wiring configurations, communications interfaces and/or long, hardwired cables.

Device-Level Protocols

One solution, discussed in a previous blog on industrial safety protocols, is to connect devices to an open, device-level protocol such as Safety Over IO-Link or AS-i Safety At Work. These protocols offer a simple way to connect devices from various suppliers using non-proprietary technologies. Both Safety Over IO-Link and AS-i Safe offer modules to which many third party devices can be connected.

Connecting to a Safety HubSafety-Arch_012518

The simplest way to connect to a safety hub/module is to buy compatible products from the hub supplier. Many safety block/hub suppliers also offer products such as E-stops, safety light curtains, door switches, inductive safety sensors and guard locking switches which may provide plug & plug solutions. There are, however, also many third party devices which can also be easily connected to some of these hubs. Hubs which are AIDA (Automation Initiative of German Domestic Automobile manufacturers) compliant allow connection of devices which are compatible with this standard. Generally, these devices have M12 connectors with 4, 5 or 8 pins, and the power, signal and ground pins are defined in the AIDA specifications. Most major safety device manufacturers offer at least one variant of their main products lines, which are AIDA pin-compatible.

AIDA/Safety Hub Compatible Devices

Some suppliers have lists of devices which meet the M12 pin/connector AIDA specification and may be connected to AIDA compatible modules. Note that not all the listed safety devices may have been tested with the safety blocks/hubs, but their specifications match the requirements. AIDA compatible devices have been identified from all major safety suppliers including Balluff, Rockwell, Sick, Schmersal, Banner, Euchner and Omron STI; and range from safety light curtains to door switches to E-stop devices.

Easy Connection

While some manufacturers prefer to focus on locking customers into a single supplier solution, many users want to combine devices from multiple suppliers in a best-in-class solution. Selecting a safety I/O block or hub which supports AIDA compatible devices makes it fast and easy to connect a wide range of these devices to create the safety system that is the best solution for your application.

Stop Industrial Network Failures With One Simple Change

Picture1

It’s the worst when a network goes down on a piece of equipment.  No diagnostics are available to help troubleshooting and all communication is dead.  The only way to find the problem is to physically and visually inspect the hardware on the network until you can find the culprit.  Many manufacturers have told me over the past few months about experiences they’ve had with down networks and how a simple cable or connector is to blame for hours of downtime.

2013-08-19_Balluff-IO-Link_Mexico_Manufactura-de-Autopartes_healywBy utilizing IO-Link, which has been discussed in these earlier blogs, and by changing the physical routing of the network hardware, you can now eliminate the loss of communication.  The expandable architecture of IO-Link allows the master to communicate over the industrial network and be mounted in a “worry-free” zone away from any hostile environments.  Then the IO-Link device is mounted in the hostile environment like a weld cell and it is exposed to the slag debris and damage.  If the IO-Link device fails due to damage, the network remains connected and the IO-Link master reports detailed diagnostics on the failure and which device to replace.  This can dramatically reduce the amount of time production is down.  In addition the IO-Link device utilizes a simple sensor cable for communication and can use protection devices designed for these types of cables.  The best part of this is that the network keeps communicating the whole time.

If you are interested in learning more about the benefits that IO-Link can provide to manufacturers visit www.balluff.us.

Light it Up! Industrial Stack Lights are old news…

I am seriously excited about the new Smart Light.  It will revolutionize how we automate and interface with people working in the manufacturing environment.  If you didnt watch this video… you need to watch this video.

Even if you don’t know what a stack light is, you will want one of these for your discotec to light it up!

Operating on the open communication protocol IO-Link that I have discussed in previous posts, I think this single part number will improve the factory for:

  • an operator wanting to know when to refill a feederbowl, position a part, or empty a full output bin
  • a maintenance guy needing to know what cell is causing the machine downtime
  • a plant manager wanting to know the machine output, speed, productivity

If you want more information on how this works visit the Smart Light webpage.

2 Simple Ways to Protect from Arc Flash Hazards

If you are a manager at any level of a manufacturing facility, I hope you are aware of the dangers of arc flash.  For those who are not aware, “an arc flash, also called arc blast or arc fault is a type of electrical explosion that results from a low-impedance connection to ground or another voltage phase in an electrical system.”  Typically this does not occur in 120V situations, but can occur in 480V+ installations if proper precautions are not taken.  Employees can be severely injured or even killed when an accident occurs while working with these kinds of electrical systems.   There are many standards  like OSHA, IEEE and NFPA that regulate these types of situations to provide a safe working environment for the employee.  In addition to those standards, I would propose two simple changes to controls architecture and design to help limit the exposure to working inside an electrical cabinet.

Continue reading “2 Simple Ways to Protect from Arc Flash Hazards”

IO-Link is the USB for Industrial Automation

I’ve recently heard this comparison used a number of times and the parallels are quite interesting.  USB was designed to help standardize a dizzying array of connectors and configurations of supplementary devices that developed during the age of the Compaq vs IBM.  It always took days to configure and establish communication between devices and then finally you could never get all the functionality that the device promised because of your PC’s specific configuration.  USB revolutionized the personal computer by allowing for a standard interface for simple devices from hard-drives to keyboard lights, and best of all by offering a device drivers the functionality promised could be delivered.  If the device broke, you bought a new one, plugged it in and it worked.

Continue reading “IO-Link is the USB for Industrial Automation”

Machine Mount I/O: Get out of the Cabinet

In April, Jim Montague of Control Design wrote an interesting article on Machine Mount I/O entitled “Machine-Mount I/O Go Everywhere.”  I think the article makes some very good points as to the value of why someone wants to move from inside an enclosure, or controls cabinet, to mounting I/O products directly on the machine.

He summarizes, with the help of a number of industry experts, the below points:

  • Same or Better control performance out of IP67 products versus IP20 products.  
    • Installation time alone “is reduced by a factor of 5 to 10”
    • Assemble more controls equipment faster with the same people & workspace
  • Smaller & Simpler components take up less real-estate on the machine

Intelligent Interfaces and IO-Link Innovation

I recently had the opportunity to attend Hannover Fair in Germany and was blown away by the experience… buildings upon buildings of automation companies doing amazing things and helping us build our products faster, smarter and cheaper.  One shining topic for me at the fair was the continued growth of new products being developed with IO-Link communications in them.

All in all, the growth of IO-Link products is being driven by the need of customers to know more about their facility, their process and their production.  IO-Link devices are intelligent and utilize a master device to communicate their specific information over an industrial network back to the controller.  To learn more about IO-Link, read my previous entry, 5 Things You Need to Know about IO-Link.

Continue reading “Intelligent Interfaces and IO-Link Innovation”

The Best Way to Communicate with Smart Sensors

When I am discussing with customers the use of smart sensors and smart devices in industrial automation, I always get posed with these questions:

  • How do the smart sensors interface with the controller?
  • How do you configure the device?
  • How do you get diagnostics out of it?
  • What other information can it provide?

This is sort of solved in a muddled world of proprietary communications or expensive network enabled sensors.  But John and I have been talking for a long time about IO-Link, which can easily and cost effectively answer all these questions!

Continue reading “The Best Way to Communicate with Smart Sensors”

Valve Manifolds on Ethernet for Cheap!

Valve manifolds, or islands or banks, are used by many automation engineers in their machine design. They are a great way to easily implement a large number of pneumatic motion applications while keeping the air infrastructure minimal.  Recent demand in the market has driven manifold manufacturers to reluctantly embed network interfaces and remote I/O into their products.   Customers tell me while manufacturer’s expertise may lie with the pneumatic side of the product; there is usually less knowledge with-in their organizations to work on the Ethernet side of the product.

Continue reading “Valve Manifolds on Ethernet for Cheap!”