Choosing Sensors Suitable for Automation Welding Environments

Standard sensors and equipment won’t survive for very long in automated welding environments where high temperatures, flying sparks and weld spatter can quickly damage them. Here are some questions to consider when choosing the sensors that best fit such harsh conditions:

    • How close do you need to be to the part?
    • Can you use a photoelectric sensor from a distance?
    • What kind of heat are the sensors going to see?
    • Will the sensors be subject to weld large weld fields?
    • Will the sensors be subject to weld spatter?
    • Will the sensor interfere with the welding process?

Some solutions include using:

    • A PTFE weld spatter resistant and weld field immune sensor
    • A high-temperature sensor
    • A photoelectric diffuse sensor with a glass face for better resistance to weld spatter, while staying as far away as possible from the MIG welding application

Problem, solution

A recent customer was going through two sensors out of four every six hours. These sensors were subject to a lot of heat as they were part of the tooling that was holding the part being welded. So basically, it became a heat sink.

The best solution to this was to add water jackets to the tooling to help cool the area that was being welded. This is typically done in high-temperature welding applications or short cycle times that generate a lot of heat.

    • Solution 1 was to use a 160 Deg C temp sensor to see if the life span would last much longer.
    • Solution 2 was to use a plunger prob mount to get more distance from the weld area.

Using both solutions was the best solution. This increased the life to one week of running before it was necessary to replace the sensor. Still better than two every 6 hours.

Taking the above factors into consideration can make for a happy weld cell if time and care are put into the design of the system. It’s not always easy to get the right solution as some parts are so small or must be placed in tight areas. That’s why there are so many choices.

Following these guidelines will help significantly.

Capacitive, the Other Proximity Sensor

What is the first thing that comes to mind if someone says “proximity sensor?” My guess is the inductive sensor, and justly so because it is the most used sensor in automation today. There are other technologies that use the term proximity in describing the sensing mode, including diffuse or proximity photoelectric sensors that use the reflectivity of the object to change states and proximity mode of ultrasonic sensors that use high-frequency sound waves to detect objects. All these sensors detect objects that are in close proximity to the sensor without making physical contact. One of the most overlooked or forgotten proximity sensors on the market today is the capacitive sensor.

Capacitive sensors are suitable for solving numerous applications. These sensors can be used to detect objects, such as glass, wood, paper, plastic, or ceramic, regardless of material color, texture, or finish. The list goes on and on. Since capacitive sensors can detect virtually anything, they can detect levels of liquids including water, oil, glue, and so forth, and they can detect levels of solids like plastic granules, soap powder, sand, and just about anything else. Levels can be detected either directly, when the sensor touches the medium, or indirectly when it senses the medium through a non-metallic container wall.

Capacitive sensors overview

Like any other sensor, there are certain considerations to account for when applying capacitive, multipurpose sensors, including:

1 – Target

    • Capacitive sensors can detect virtually any material.
    • The target material’s dielectric constant determines the reduction factor of the sensor. Metal / Water > Wood > Plastic > Paper.
    • The target size must be equal to or larger than the sensor face.

2 – Sensing distance

    • The rated sensing distance, or what you see in a catalog, is based on a mild steel target that is the same size as the sensor face.
    • The effective sensing distance considers mounting, supply voltage, and temperature. It is adjusted by the integral potentiometer or other means.
    • Additional influences that affect the sensing distance are the sensor housing shape, sensor face size, and the mounting style of the sensor (flush, non-flush).

3 – Environment

    • Temperatures from 160 to 180°F require special considerations. The high-temperature version sensors should be used in applications above this value.
    • Wet or very humid applications can cause false positives if the dielectric strength of the target is low.
    • In most instances, dust or material buildup can be tuned out if the target dielectric is higher than the dust contamination.

4 – Mounting

    • Installing capacitive sensors is very similar to installing inductive sensors. Flush sensors can be installed flush to the surrounding material. The distance between the sensors is two times the diameter of the sensing distance.
    • Non-flush sensors must have a free area around the sensor at least one diameter of the sensor or the sensing distance.

5 – Connector

    • Quick disconnect – M8 or M12.
    • Potted cable.

6 – Sensor

    • The sensor sensing area or face must be smaller or equal to the target material.
    • Maximum sensing distance is measured on metal – reduction factor will influence all sensing distances.
    • Use flush versions to reduce the effects of the surrounding material. Some plastic sensors will have a reduced sensing range when embedded in metal. Use a flush stainless-steel body to get the full sensing range.

These are just a few things to keep in mind when applying capacitive sensors. There is not “a” capacitive sensor application – but there are many which can be solved cost-effectively and reliably with these sensors.

Weld Immune vs. Weld Field Immune: What’s the difference? 

In today’s automotive plants and their tier suppliers, the weld cell is known to be one of the most hostile environments for sensors. Weld slag accumulation, elevated ambient temperatures, impacts by moving parts, and strong electromagnetic fields can all degrade sensor performance and cause false triggering. It is widely accepted that sensors will have a limited life span in most plants.

Poor sensor selection does mean higher failure rates which cause welders in all industries increased downtime, unnecessary maintenance, lost profits, and delayed delivery. There are many sensor features designed specifically to withstand these harsh welding environments and the problems that come along with them to combat this.

In the search for a suitable sensor for your welding application, you are sure to come across the terms weld immune and weld field immune. What do these words mean? Are they the same thing? And will they last in my weld cell?

Weld Immune ≠ Weld Field Immune

At first glance, it is easy to understand why someone may confuse these two terms or assume they are one and the same.

Weld field immune is a specific term referring to sensors designed to withstand strong electromagnetic fields. In some welding areas, especially very close to the weld gun, welders can generate strong magnetic fields. When this magnetic field is present, it can cause a standard sensor to perform intermittently, like flickering and false outputs.

Weld field immune sensors have special filtering and robust circuitry that withstand the influence of strong magnetic fields and avoid false triggers. This is also called magnetic field immune since they also perform well in any area with high magnetic noise.

On the other hand, weld immune is a broad term used to describe a sensor designed with any features that increase its performance in a welding application. It could refer to one or multiple sensor features, including:

    • Weld spatter resistant coatings
    • High-temperature resistance
    • Different housing or sensor face materials
    • Magnetic field immunity

A weld field immune sensor might be listed with the numerous weld immune sensors with special coatings and features, but that does not necessarily mean any of those other sensors are immune to weld fields. This is why it is always important to check the individual sensor specifications to ensure it is suitable for your application.

In an application where a sensor is failing due to impact damage or weld slag spatter, a steel face sensor with a weld resistant coating could be a great solution. If this sensor isn’t close to the weld gun and isn’t exposed to any strong magnetic fields, there is really no need for it to be weld field immune. The important features are the steel face and coating that can protect it against impact and weld slag sticking to it. This sensor would be classified as weld immune.

In another application where a sensor near the weld gun side of the welding procedure where MIG welding is performed, this location is subject to arc blow that can create a strong magnetic field at the weld wire tip location. In this situation, having a weld field immune sensor would be important to avoid false triggers that the magnetic field may cause. Additionally, being close to a MIG weld gun, it would also be wise to consider a sensor with other weld immune properties, like a weld slag resistant coating and a thermal barrier, to protect against high heat and weld slag.

Weld field immunity is just one of many features you can select when picking the best sensor for your application. Whether the issue is weld slag accumulation, elevated ambient temperatures, part impact, or strong electromagnetic fields, there are many weld immune solutions to consider. Check the placement and conditions of the sensors you’re using to decide which weld-immune features are needed for each sensor.

Click here for more on choosing the right sensor for your welding application.

 

IO-Link Benefits in Robotic Weld Cell Tooling

By Scott Barhorst

Working previously as a controls engineering manager in robotic welding, I have seen some consistent challenges when designing robotic weld cell systems.

For example, the pre-engineered-style welding cells I’ve worked with use many types of tooling. At the same time, space for tooling and cabling is limited, and so is the automation on board, with some using PLC function and others using a robot controller to process data.

One approach that worked well was to use IO-Link in the systems I designed. With its simple open fieldbus communication interface and digital transmission, it brought a number of benefits.

    1.  IO-Link’s digital signals aren’t affected by noise, so I could use smart sensors and connect them with unshielded 4-pin cables.
    2.  Expandability was easy, either from the Master block or by adding discrete I/O modules.
    3.  IO-Link can use the ID of the block to identify the fixture it is associated with to make sure the correct fixture is in the correct location.
    4.  Cabling is simplified with IO-Link, since the IO-Link Master can control both inputs, outputs, and control valve packs. That means that the only cables needed will be 24V power, Ethernet, weld ground (depending on the system), and air.
    5.  Fewer cables means less cost for cables and installation, cable management is improved, and there are fewer cables to run through a tailstock or turntable access hole.

One system I designed used 1 IO-Link Master block, 3 discrete I/O modules, and 1 SMC valve manifold controlled via IO-Link. This tooling had 16 clamps and 10 sensors, requiring 42 total inputs and control of 16 valves. The system worked very well with this setup!

An additional note: It’s good to think beyond the process at hand to how it might be used in the future. A system built on IO-Link is much more adaptable to different tooling when a change-over is needed. Click here to read more about how to use IO-Link in welding environments.

 

 

 

 

 

Why Sensor & Cable Standardization is a Must for End-Users

Product standardization makes sense for companies that have many locations and utilize multiple suppliers of production equipment. Without setting standards for the components used on new capital equipment, companies incur higher purchasing, manufacturing, maintenance, and training costs.

Sensors and cables, in particular, need to be considered due to the following:

  • The large number of manufacturers of both sensors and cables
  • Product variations from each manufacturer

For example, inductive proximity sensors all perform the same basic function, but some are more appropriate to certain applications based on their specific features. Cables provide a similar scenario. Let’s look at some of the product features you need to consider.

Inductive Proximity Sensors Cables
 

·         Style – tubular or block style

·         Size and length

·         Electrical characteristics

·         Shielded or unshielded

·         Sensing Range

·         Housing material

·         Sensing Surface

 

·         Connector size

·         Length

·         Number of pins & conductors

·         Wire gage

·         Jacket material

·         Single or double ended

 

Without standards each equipment supplier may use their own preferred supplier, many times without considering the impact to the end customer. This can result in redundancy of sensor and cable spare parts inventory and potentially using items that are not best suited for the manufacturing environment. Over time this impacts operating efficiency and results in high inventory carrying costs.

Once the selection and purchasing of sensors and cables is standardized, the cost of inventory will coincide.  Overhead costs, such as purchasing, stocking, picking and invoicing, will go down as well. There is less overhead in procuring standard parts and materials that are more readily available, and inventory will be reduced. And, more standardization with the right material selection means lower manufacturing down-time.

In addition, companies can then look at their current inventory of cable and sensor spare parts and reduce that footprint by eliminating redundancy while upgrading the performance of their equipment. Done the right way, standardization simplifies supply chain management, can extend the mean time to failure, and reduce the mean time to repair.

You have options when it comes to connecting your sensors

When it comes to connecting I/O in factory automation settings, there are many options one can choose to build an efficient and cost-effective system. This is one area where you can reduce costs while also boosting productivity.

Single Ended Cables and Hardwired I/O

It is common in the industry for single ended cables to be run from sensors to a controller input card in a centralized control cabinet. And while this method works, it can be costly for a number of reasons, including:

  • Flying leads on single ended cables are time consuming to prepare and wire
  • Wiring mistakes are often made leading to more time troubleshooting
  • I/O Cards for PLCs are expensive
  • Long cable runs to a centralized location add up quickly especially when dealing with analog devices which require expensive shielded cables
  • Lack of scalability and diagnostics

Double Ended Cables and Networked I/O

Using double ended cables along with network I/O blocks allows for a cost-effective solution to distribute I/O and increase up time. There are numerous benefits that come along with this sort of architecture. Some of these benefits are:

  • Reduced cabling — since I/O is distributed, only network cables need to be run back to the control cabinet reducing cost and cabinet size, and sensor cables are shortened since I/O blocks are machine mounted
  • Quicker build time since standard wiring is less labor intensive
  • Diagnostics allows for quicker trouble shooting, leading to lower maintenance costs and reduced downtime

IO-Link

Using IO-Link delivers all of the strengths of networked I/O as well as additional benefits:

  • I/O Hubs allow for scalability
  • Smart devices can be incorporated into your system
  • Parameterization capability
  • Increased diagnostics from intelligent devices
  • Reduced costs and downtime
  • Increased productivity

Inductive Coupling for non-contact connection

Many people are using inductive coupling technology to provide a non-contact connection for their devices. This method allows you to pass both power and signal across an air gap making it ideal for replacing slip rings or multi-pin connectors in many applications. This provides some great options for industry to gain benefits in these areas such as:

  • Reduced wear since there is no physical connection
  • Faster change over
  • Reduced downtime due to the elimination of damaged connector pins

For more information on connectivity and I/O architecture solutions please visit www.balluff.com.

M12 Connector Coding

New automation products hit the market every day and each device requires the correct cable to operate. Even in standard cables sizes, there are a variety of connector types that correspond with different applications.

When choosing a cable, it is essential to choose the correct size, length, number of connectors, pinout, and codes for your application. This post will review cable codes, which signify different capabilities and uses for a cable. Cables that are coded differently will have different specifications and electrical features, corresponding to their intended uses. To distinguish between the different styles of cable, each connector has a different keyway, as shown in Figure 1.  This is to prevent a cable from being used in an incorrect application.

Cable Codes-01

There are a wide variety of cable codings used for different purposes. Below are the five most common M12 cable codes and their uses. They are as follows:

  • A-coded connectors are the most common style of connector. These are used for sensors, actuators, motors, and most other standard devices. A-coded connectors can vary in its number of pins, anywhere between two pins and 12 pins.
  • B-coded connectors are mostly used in network cables for fieldbus connections. Most notably, this includes systems that operate with Profibus. B-coded connectors typically have between three and five pins.
  • C-coded connectors are less common than the others. These connectors are primarily used with AC sensors and actuators. They also have a dual keyway for added security, ensuring that this connector will not be accidentally used in the place of another cable. C-coded connectors have between three and six pins.
  • D-coded connectors are typically used in network cables for Ethernet and ProfiNet systems. D-coded connectors transfer data up to 100 Mb. These connectors typically provide three to five pins.
  • X-coded connectors are a more recent advancement of the cables. They are growing in popularity due to their ability to transfer large amounts of data at high speeds. X-coded cables transfer data up to 1 Gb. These are ideal for high-speed data transfer in industrial applications. While the other coded cables typically vary in number of connectors, X-coded cables will always have eight pins.

Maintain Machine Up-Time with Application-Specific Cables

Using high-durability cables in application environments with high temperatures, weld spatter, or washdown areas improves manufacturing machine up-time.

It is important to choose a cable that matches your specific application requirements.

Washdown Applications

When a food and beverage customer needs to wash down their equipment after a production shift, a standard cable is likely to become a point of failure. A washdown-specific cable with an IP68/IP69 rating is designed to withstand high-pressure cleaning. It’s special components, such as an internal O-ring and stainless-steel connection nut, keep water and cleaners from leaking.

Welding Applications

Welding environments require application-specific cables to deal with elevated temperatures, tight bend radiuses and weld spatter. Cables with a full silicone jacket prevent the build-up of debris, which can cause shorts and failures over time.

High Temperature cables

Applications with high temperatures require sensors that can operate reliably in their environment. The same goes for the cables. High temperature cables include added features such as a high temperature jacket and insulation materials specifically designed to perform in these applications.

Cables

Selecting the correct cable for a specific application area is not difficult when you know the requirements the application environment demands and incorporate those demands into your choice. It’s no different than selecting the best sensor for the job. The phrase to remember is “application specificity.”

For more information on standard and high-durability cables, please visit www.balluff.com.

 

Put Out the Fire

Every time I enter tier 1 and tier 2 suppliers, there seems to be a common theme of extreme sensor and cable abuse. It is not uncommon to see a box or bin of damaged sensors along with connection cables that have extreme burn-through due to extreme heat usually generated by weld spatter. This abuse is going to happen and is unavoidable in most cases.  The only option to combat these hostile environments is to select the correct components, such as bunker blocks, protective mounts, and high temperature cable materials that can withstand hot welding applications.

Example of bad bunkering. Sensor face not protected. Plastic brackets and standard cables used.
Example of bad bunkering. Sensor face not protected. Plastic brackets and standard cables used.

In many cases I have seen standard sensors and cables installed in a weld cell with essentially zero protection of the sensor. This results in a very non-productive application that simply cannot meet production demands due to excessive downtime. At the root of this downtime you will typically find sensor and cable failure. These problems can only go on for so long before a culture change must happen throughout a manufacturing or production plant as there is too much overtime resulting in added cost and less efficiency. I call this the “pay me now or pay me later” analogy.

Below are some simple yet effective ways to improve sensor and cable life:

Example of properly bunkered sensors with bunker block and silicone wrapped cable
Example of properly bunkered sensors with bunker block and silicone wrapped cable
  • Apply flush sensors vs. non-flush sensor in fixtures
  • Bunker the flush sensors to protect the face of the sensor (Let the bunker block take the spatter)
  • Apply sensors with special coatings to combat weld spatter
  • Apply sensors with steel faces for added insurance against contact damage
  • Apply high temp cables such as full silicone high durability offerings
  • Protect cables with silicone tubing and high temperature weld jackets
  • Wrap cables with weld repel tape to insure spatter will not penetrate the ends of the cable

If these simple steps are followed, uptime and efficiency will result in increased productivity with immediate improvements and positive results.

For information on welding improvements visit our website at www.balluff.us.

3 Tips for Reducing Downtime

Whether it’s through preventative maintenance or during planned machine downtime, reducing downtime is a common goal for manufacturers. Difficult environments create challenges for not just machines, but also the components like sensors or cables. Below are three tips to help protect these components and reduce your downtime.

sacraficialcableCables don’t last forever. However, they are important for operations and keeping them functional is vital. An easy way to help reduce downtime and save money is by implementing a “sacrificial cable” in unforgiving environments. A sacrificial cable is any cable less than two meters in length and placed in situations where there is high turnover of cables.  This sacrificial cable does not have to be a specialty cable with a custom jacket. It can be a simple 1 meter PVC cable that will get changed out often. The idea is to place a sacrificial cable in a problematic area and connect it to a longer length cable, or a home-run cable. The benefits of this method include: less downtime for maintenance when changing out failures, reduced expenses since shorter cables are less expensive, and there is less travel for the cable around a cell.

hdc_cablesA second way to help reduce downtime is consider your application conditions up front. We discussed some of the application conditions to consider in a previous blog post, but how can we address these challenges? Not only is it important to choose the correct sensor for the environment, but remember, cables don’t last forever. Choosing the appropriate cable is also key to reducing downtime. Welding environments demand a cable that weld beads will not stick to and fuse the cable to the sensor. There are a variety of jacket types like silicone, silicone tube, or PTFE that prevent weld debris from accumulating on the cable. I’ve also seen applications where there is a lot of debris cutting through cables. In this case, a stainless steel braid cable would be a better solution than a traditional cable. Fitting the right protection to the right application is crucial..

gizmo4A third tip to help reduce your machine downtime is to simply add protection to your existing components. Adding protection, whether it is a protective bracket or a silicone product, will help keep components running longer. This type of protection can be added before or after the cell is operational.   One example of sensor protection is adding a ceramic cap to protect the face of a sensor. You can also protect the connection by adding tubing to the cable out version of the sensor to shield it from debris. Mounting sensors in a robust bracket helps protect the sensor from being hit, or having debris cover the sensor.  There are different degrees of changes that help prolong operations.

Metalforming expert, Dave Bird, explains some of these solutions in the video below. To learn more you can also visit our website at www.balluff.us.