Manufacturers Track Goods, Reduce Errors, Decrease Workload with RFID

More and more, retailer sellers are starting to require that manufacturers place RFID tags on their products before they leave the production facility and are shipped to those retail locations. From high-end electronics all the way down to socks and underwear are being tagged.

These tags are normally supplied by the retailer or through a contracted third party. Typically disposable UHF paper tags, they are only printed with a TID number and a unique EPC that may or may not correspond to the UPC and barcode that was used in the past. Most cases I have seen require that the UPC and a barcode be printed on these RFID tags so there is information available to the human eye and a barcode scanner when used.

While this is being asked for by the retailers, manufacturers can use these tags to their own advantage to track what products are going out to their shipping departments and in what quantities. This eliminates human error in the tracking process, something that has been a problem in the past, while also reducing workload as boxes of finished goods no longer must be opened, counted and inspected for accuracy.

A well-designed RFID portal for these items to pass through can scan for quantities and variances in types of items in boxes as they pass through the portal. Boxes that do not pass the scan criteria are then directed off to another area for rework and reevaluation. Using human inspection for just the boxes that do not pass the RFID scan greatly reduces the labor effort and expedites the shipping process.

I recently assisted with a manufacturer in the garment industry who was having to tag his garments for a major retailer with RFID tags that had the UPC and a barcode printed on them. The tags were supplied through the retailer and the EPCs on the tags were quite different then the UPC numbers printed on them.

The manufacturer wanted to know how many garments of each type were in each box. Testing showed that this could be done by creating a check point on his conveyor system and placing UHF RFID antennas in appropriate locations to ensure that all the garments in the box were detected and identified.

In this case, the manufacturer wanted was a simple stand-alone system that would display a count of different types of garments. An operator reviewed the results on a display and decided based on the results whether to accept the box and let the conveyor forward it to shipping or reject it and divert it to another conveyor line for inspection and adjustment.

While this system proved to be relatively simple and inexpensive, it satisfied the desires of the manufacturer. It is, however, possible to connect an RFID inspection station to a manufacturing information system that would know what to expect in each box and could automatically accept or reject boxes based on the results of the scans without human intervention and/or human error.

Palletized Automation with Inductive Coupling

RFID is an excellent way to track material on a pallet through a warehouse. A data tag is placed on the pallet and is read by a read/write head when it comes in range. Commonly used to identify when the pallet goes through the different stages of its scheduled process, RFID provides an easy way to know where material is throughout a process and learn how long it takes for product to go through each stage. But what if you need I/O on the pallet itself or an interchangeable end-of-arm tool?

Inductive Coupling

1

Inductive coupling delivers reliable transmission of data without contact. It is the same technology used to charge a cell phone wirelessly. There is a base and a remote, and when they are aligned within a certain distance, power and signal can be transferred between them as if it was a standard wire connection.

2

When a robot is changing end-of-arm tooling, inductive couplers can be used to power the end of arm tool without the worry of the maintenance that comes with a physical connection wearing out over time.

For another example of how inductive couplers can be used in a process like this, let’s say your process requires a robot to place parts on a metal product and weld them together. You want I/O on the pallet to tell the robot that the parts are in the right place before it welds them to the product. This requires the sensors to be powered on the pallet while also communicating back to the robot. Inductive couplers are a great solution because by communicating over an air gap, they do not need to be connected and disconnected when the pallet arrives or leaves the station. When the pallet comes into the station, the base and remote align, and all the I/O on the pallet is powered and can communicate to the robot so it can perform the task.

Additionally, Inductive couplers can act as a unique identifier, much like an RFID system. For example,  when a pallet filled with product A comes within range of the robot, the base and remote align telling the robot to perform action A. Conversely, when a pallet loaded with product B comes into range, the robot communicates with the pallet and knows to perform a different task. This allows multiple products to go down the same line without as much changeover, thereby reducing errors and downtime.

Not All RFID is Created Equal: Is Yours Built for an Industrial Environment?

The retail environments where products are sold look nothing like the industrial environments where they are produced (think of the difference between a new car dealership and an automotive manufacturing plant). Yet the same RFID products developed for retail stores and their supply chain operations are still marketed to manufacturers for production operations. These products may work fine in warehouses, but that does not necessarily qualify them as industrial grade.

IO-Link_RFID

So what are the differences between retail and industrial RFID?

Production environments often require a level of ruggedness, performance, and connectivity that only purpose-built industrial equipment can reliably satisfy. For example, general-purpose RFID equipment may have the physical Ethernet port needed to connect to a PC or server, but will not support EtherNet/IP, Profinet or other industrial protocols that run on PLCs and other industrial automation control equipment. Many retail grade readers need to be supported with an additional protocol conversion, which can require external hardware and slow system performance, and adds to implementation time, difficulty, and expense.

When evaluating RFID equipment, it is essential to make the distinction between what is possible for use in the environment and what is optimal and, therefore, more reliable. There are three fundamental qualities to consider that can determine if RFID systems will perform reliably in demanding production environments:

  • Will the RFID system integrate seamlessly with industrial control systems?
  • Will it provide the reliability and speed that production and their information systems tied in require?
  • Can it maintain uptime and performance long term – will it last on the production line?

RFID is often marketed as a “solution,” however in manufacturing operations, it is almost always used as a supporting technology to provide data and visibility to the MES, ERP, e-Kanban, robotics, asset tracking, material handling, quality control and other systems that run in production facilities. Failure to accurately provide data to these systems at the reliability and speed levels they require eliminates the value of using RFID.

The physical environments in industrial and supply chain settings cause RFID technology to perform differently. Tag density can be a consideration for industrial RFID users like retail, but an industrial environment has much more challenging and powerful potential interference sources, for example, the presence of metal found in most industrial products and environments.

When determining whether RFID products are suitable for a specific environment, it is important to look beyond published marketing hype and misleading specifications. Consider the design and construction of the product and how it could be affected by various work processes. Whenever possible, you should test the products where they will be used rather than in a lab or demonstration area, because the actual work location has interference and environmental conditions that may be overlooked and impossible to duplicate elsewhere.

The key attributes that differentiate industrial RFID equipment from supply chain-oriented alternatives include:

  • Native support for industrial protocols;
  • High tag read reliability and the ability to continuously operate at speeds that won’t slow production systems;
  • Durable housing with secure connectors with IP65 or better rating and relevant certifications for shock, vibration and temperature resistance;
  • The ability to support multiple RFID technologies and supporting devices as needed, including sensors, PLCs, IO-Link, and other industrial automation equipment.

Compromising on any of these criteria will likely result in unnecessary implementation time, support, and replacement costs and increase the risk for system failure.

Top 5 Insights from 2019

With a new year comes new innovation and insights. Before we jump into new topics for 2020, let’s not forget some of the hottest topics from last year. Below are the five most popular blogs from our site in 2019.

1. How to Select the Best Lighting Techniques for Your Machine Vision Application

How to select the best vision_LI.jpgThe key to deploying a robust machine vision application in a factory automation setting is ensuring that you create the necessary environment for a stable image.  The three areas you must focus on to ensure image stability are: lighting, lensing and material handling.  For this blog, I will focus on the seven main lighting techniques that are used in machine vision applications.

READ MORE>>

2. M12 Connector Coding

blog 7.10_LI.jpgNew automation products hit the market every day and each device requires the correct cable to operate. Even in standard cables sizes, there are a variety of connector types that correspond with different applications.

READ MORE>>

3. When to use optical filtering in a machine vision application

blog 7.3_LI.jpgIndustrial image processing is essentially a requirement in modern manufacturing. Vision solutions can deliver visual quality control, identification and positioning. While vision systems have gotten easier to install and use, there isn’t a one-size-fits-all solution. Knowing how and when you should use optical filtering in a machine vision application is a vital part of making sure your system delivers everything you need.

READ MORE>>

4. The Difference Between Intrinsically Safe and Explosion Proof

5.14_LIThe difference between a product being ‘explosion proof’ and ‘intrinsically safe’ can be confusing but it is vital to select the proper one for your application. Both approvals are meant to prevent a potential electrical equipment malfunction from initiating an explosion or ignition through gases that may be present in the surrounding area. This is accomplished in both cases by keeping the potential energy level below what is necessary to start ignition process in an open atmosphere.

READ MORE>>

5. Smart choices deliver leaner processes in Packaging, Food and Beverage industry

Smart choices deliver leaner processes in PFB_LI.jpgIn all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

READ MORE>>

We appreciate your dedication to Automation Insights in 2019 and look forward to growth and innovation in 2020!

 

 

RFID for Improved Operator Accountability

One of the most fascinating parts of my job is making site visits to manufacturing plants across the country. Getting a first-hand look at how things are made in a modern manufacturing facility is nothing short of amazing. Robots whirling, automatic guided vehicles (AGV’s) navigating the floor, overhead cranes and gantries lifting tons of material over-head, flames shooting from ovens, and metal chips flying create an exciting, but sometimes dangerous, work environment. To some people this may seem like a good reason to avoid these places, but if you are fitted with the appropriate personal protective equipment (PPE) the chances for injury are minimal.

The safety of every human in the plant is the top priority.  This is why there are requirements to wear PPE that is suitable for the environment and the hazards within. The challenge is confirming that everyone is aware of the required equipment, and that they indeed are wearing that equipment.

This can be accomplished with a simple RFID kiosk system. When an operator scans their ID they are asked a series of questions to ensure they are wearing the correct PPE. If the operator confirms they are wearing all the required gear, they can begin work in the area they are assigned. If not, a supervisor will be notified so the correct equipment can be obtained. This method can serve as a daily reminder for what needs to be worn while holding the operator accountable.

Ultimately, it is up to the plant and occupational safety organizations to define what needs to be worn and where it should be worn, but it is the responsibility of the operator to actually wear it. The same system can be used for vendors, visitors or anyone else who ventures out on the plant floor.

Using RFID to Create Transparency in Production

To meet today’s requirements for fast delivery and infinite flexibility, many productions are already set up as flow production with work steps distributed to workstations. As a result, products can be individually adapted in order to optimally meet customer requirements.

The basic prerequisite for this is to continuously know where a product is in the process. Additionally, information should be available about the next workstation and the subsequent work step. Without technical assistance, the required information can only be generated by the employee with much effort. Additionally, you run the risk of production steps being confused and time delays occurring in the production process. One solution to meet the requirements with minimum effort and maximum reliability is to install automated product recognition by using an RFID system.

 
Automated product recognition with an RFID system

To install an RFID system one important prerequisite must be fulfilled. Each product that is planned to be tracked needs a compatible RFID data carrier. This enables an individual connection between the order number and the product, which is then stored in a database.

During the product creation, the stored connection is called up multiple times. Each time it is supplemented by further information. In this way product traceability can be ensured. The connection is initiated by an antenna of the RFID system, which recognizes the data carrier and its ID. The resulting data shows which product is at the workplace, the time stamp, the place of recognition and the order number, all of which are noted in the database.

image 1
Communication between RFID system, database and production employee

 

Reduction of error rate and increase of efficiency in the production

In addition to ensuring traceability, the installation of an RFID system can also significantly reduce the failure rate in the production. The connection to the database allows information to move in two ways. On one hand additional information is provided, while on the other further information is created that can be processed by other systems.

The storage of the time stamp enables an analysis of the duration of each work step. This makes the identification of potential ways to improve in the production possible. If this analysis and the implementation of the system is done consequently, the efficiency in the production can be improved continuously.

 

Tracking and Traceability in Mobility: A Step Towards IIoT

In today’s highly competitive automotive environment, it is becoming increasingly important for companies to drive out operating costs in order to ensure their plants maintain a healthy operating profit.

Improved operational efficiency in manufacturing is a goal of numerous measures. For example, in Tier 1 automotive parts manufacturing it is common place to have equipment that is designed to run numerous assemblies through one piece of capital equipment (Flexible Manufacturing). In order to accommodate multiple assemblies, different tooling is designed to be placed in this capital equipment. This reduces required plant floor real-estate and the costs normally required for unidimensional manufacturing equipment. However, with this flexibility new risks are introduced, such as running the machine with incorrect tooling which can cause increased scrap levels, incorrect assembly of parts and/or destruction/damage of expensive tooling, expedited freight, outsourcing costs, increased manpower, sorting and rework costs, and more.

Having operators manually enter recipes or tooling change information introduces the Human Error of Probability (HEP).  “The typical failure rates in businesses using common work practices range from 10 to 30 errors per hundred opportunities. The best performance possible in well managed workplaces using normal quality management methods are failure rates of 5 to 10 in every hundred opportunities.” (Sondalini)

Knowing the frequency of product change-over rates, you can quickly calculate the costs of these potential errors. One means of addressing this issue is to create Smart Tooling whereby RFID tags are affixed on the tooling and read/write antennas are mounted on the machinery and integrated into the control architecture of the capital equipment. The door to a scalable solution has now been opened in which each tool is assigned a unique ID or “license plate” identifying that specific tooling. Through proper integration of the capital equipment, the plant can now identify what tooling is in place at which OP station and may only run if the correct tooling is confirmed in place. In addition, one can then move toward predictive maintenance by placing process data onto the tag itself such as run time, parts produced, and tooling rework data. Collection and monitoring of this data moves the plant towards IIoT and predictive maintenance capabilities to inform key personnel when tooling is near end of life or re-work requirement thus contributing to improved OEE (Overall Equipment Effectiveness) rates.

Capture

For more information on RFID, visit www.balluff.com.

*Source: Mike Sondalini, Managing Director, Lifetime Reliability Solutions, Article: Unearth the answers and solve the causes of human error in your company by understanding the hidden truths in human error rate tables

Why RFID is the VIP of 2019

The “most popular” annual lists don’t usually come out until the end of the year, but I think it is worth mentioning now three applications that have gained substantial momentum this year. With the Smart Factory concept being driven around the globe, RFID has emerged from the shadows and taken its place in the spotlight. The demand for a larger amount of data, more security, and increased visibility into the production process has launched RFID into a leading role when it comes to automation.

Machine Access Control

When considering RFID being utilized for access control, they think about readers located near doorways either outside the building or within the plant. While those readers operate much like the industrial readers, they typically cannot communicate over an industrial communication protocol like Ethernet/IP, Profinet, or IO-Link.  With an industrial access control reader one can limit access to HMIs, PLCs, and various control systems by verifying the user and allowing access to the appropriate controls.  This extra layer of security also ensures operator accountability by identifying the user.

Machine Tool ID

RFID has been used in machining centers for decades. However, it was used mostly in larger scale operations where there were acres of machines and hundreds of tools. Today it’s being used in shops with as few as one machine. The ROI is dependent on the number of tool changes in a shift; not necessarily just the number of machines and the number of tools in the building. The greater the number of tool changes, the greater the risk of data input errors, tool breakage, and even a crash.

Content verification

Since RFID is capable of reading through cardboard and plastic, it is commonly used to verify the contents of a container. Tags are fixed to the critical items in the box, like a battery pack or bag of hardware, and passed through a reader to verify their presence. If, in this case, two tags are not read at the final station then the box can be opened and supplied with the missing part before it ships. This prevents an overload on aftersales support and ensures customers get what they ordered.

While RFID is still widely used to address Work in Process (WIP), asset tracking, and logistics applications, the number of alternative applications involving RFID has skyrocketed due to an increase in demand for actionable data.  Manufacturing organizations around the world have standardized on RFID as a solution in cases where accountability, reliability and quality are critical.

 

What to Ask Before You Build an RFID System to Meet Your Traceability Needs

An industrial RFID system is a powerful solution for reliably and comprehensively documenting individual working steps in manufacturing environments. But an industrial RFID system that meets your application needs isn’t available off-the-shelf. To build the system you need, it is important to consider what problems you hope RFID will solve and what return on investments you hope to see.

RFID can deliver many benefits, including process visibility and providing data needed to better manage product quality. It can be used to improve safety, satisfaction and profit margins. It can even be used to help comply with regulatory standards or to manage product recalls. And RFID can be used in a wide range of applications from broad areas like supply management to inventory tracking to more specific applications. These improvements can improve time, cost or performance—though not typically all three.

It is essential to understand and document the goal and how improvements will be measured to in order to plan a RFID system (readers, antennas, tags, cables) to best meet those goals.

Other important questions to consider:

Will the system be centralized or de-centralized? Will the system be license plate only or contain process data on the tag?

How will the data on the tags be used?  Will the information be used to interface with a PLC, database or ERP? Will it be used to provide MES or logical functionality? Or to provide data to an HMI or web browser/cloud interface?

Will the system be required to comply with any international regulations or standards? If so, which ones: EPC Global, Class 1 Gen 2 (UHF only), ISO 15693, or 14443 (HF only)?

What environment does the system need to perform in? Will it be used indoor or outdoor? Will it be exposed to liquids (cleaning fluids, coolants, machine oils, caustics) or high or low temperatures?

Does the RFID system need to work with barcodes or any other human readable information?

What are the performance expectations for the components? What is the read/write range distance from head to tag? What is the station cycle timing? Is the tag metal-mounted? Does the tag need to be reused or be disposable? What communication bus is required?

With a clear set of objectives and goals, the mechanical and physical requirements discovered by answering the questions above, and guidance from an expert, a RFID system can be configured that meets your needs and delivers a strong return on investment.

RFID: Using Actionable Data to Make Critical Decisions

While RFID technology has been in use since the 1950s, wide-spread implementation has come in waves over the years. Beginning with military applications where it was used to identify friend or foe aircraft, to inventory control in the retail industry, and now to the manufacturing space where it is being used to manage work in process, track assets, control inventory, and aid with automatic replenishment.

The bottom line is RFID is critical in the manufacturing process. Why? Because, fundamentally, it provides actionable data that is used to make critical decisions. If your organization has not yet subscribed to RFID technology then it is getting ready to. This doesn’t mean just in the shipping and receiving area.  Wide-spread adoption is happening on the production line, in the tool room, on dies, molds, machine tools, on AGV’s, on pallets, and so much more.

Not an RFID expert? It’s ok. Start with a quick overview.

Learn about the fundamentals of a passive RFID system here.

In the past, controls engineers, quality assurance managers, and maintenance supervisors were early adopters because RFID played a critical role in giving them the data they needed. Thanks to global manufacturing initiatives like Smart Factory, Industry 4.0, the Industrial Internet of things (IIOT) and a plethora of other manufacturing buzz words, CEOs, CFOs, and COOs are driving RFID concepts today. So, while the “hands-on” members of the plant started the revolution, the guys in the corner offices quickly recognized the power of RFID and accelerated the adoption of the technology.

While there is a frenzy in the market, it is important to keep a few things in mind when exploring how RFID can benefit your organization:

  • Choose your RFID partner based on their core competency in addressing manufacturing applications
  • Make sure they have decades of experience manufacturing and implementing RFID
  • Have them clearly explain their “chain of support” from local resources to experts at the HQ.
  • Find a partner who can clearly define the benefits of RFID in your specific process (ROI)
  • Partner with a company that innovates the way their customers automate