How Condition Monitoring has Evolved and Its Role in IIoT

In recent years, as IIoT and Industry 4.0 have become part of our everyday vocabulary, we’ve also started hearing more about condition monitoring, predictive maintenance (PdM) and predictive analytics. Sometimes, we use these terms interchangeably as well. Strictly speaking, condition monitoring is a root that enables both predictive maintenance and predictive analytics. In today’s blog we will brush up a little on condition monitoring and explore its lineage.

Equipment failures have been around since the beginning of time. Over the years, through observation (collecting data) and brute-force methods, we learned that from time-to-time every piece of equipment needs some TLC. Out of this understanding, maintenance departments came to existence, and there we started having experts that could tell based on touch, smell and noise what is failing or what has gone wrong.

Figure 1: Automation Pyramid

Then we started automating the maintenance function either as a preventative measure (scheduled maintenance) or through some automated pieces of equipment that would collect data and provide alerts about a failure. We proudly call these SCADA systems – Supervisory Control and Data Acquisition. Of course, these systems did not necessarily prevent failures, but help curtail them.  If we look at the automation pyramid, the smart system at the bottom is a PLC and all the sensors are what we call “dumb sensors”. So, that means, whatever information the SCADA system gets would be filtered by the PLC. PLCs were/have been/ and are always focused on the process at hand; they are not data acquisition equipment. So, the data we receive in the SCADA system is only as good as the PLC can provide. That means the information is primarily about processes. So, the only alerts maintenance receives is when the equipment fails, and the process comes to a halt.

With the maintenance experts who could sense impending failures becoming mythological heroes, and  SCADA systems that cannot really tell us the story about the health of the machines, once again, we are looking at condition monitoring with a fresh set of eyes.

Sensors are at the grass root level in the automation pyramid, and until the arrival of IO-Link technology, these sensors were solely focused on their purpose of existence; object detection, or measurement of some kind. The only information one could gather from these sensors was ON/OFF or a signal of 4-20mA, 0-10V, and so on. Now, things are different, these sensors are now becoming pretty intelligent and they, like nosy neighbors, can collect more information about their own health and the environment. These intelligent sensors can utilize IO-Link as a communication to transfer all this information via a gateway module (generally known as IO-Link master) to whomever wants to listen.

Figure 2: IO-Link enabled Balluff photo-eye

The new generation of SCADA systems can now collect information not only from PLCs about the process health, but also from individual devices. For example, a photo-eye can measure the intensity of the reflected light and provide an alert if the intensity drops beyond a certain level, indicating a symptom of pending failure. Or a power supply inside the cabinet providing an alert to the supervisory control about adverse conditions due to increase temperature or humidity in the cabinet. These types of alerts about the symptoms help maintenance prevent unplanned downtime on the plant floor and make factories run more efficiently with reduced scrap, reduced down-time and reduced headaches.

Figure 3: The Next Generation Condition Monitoring

There are many different condition monitoring architectures that can be employed, and we will cover that in my next blog.

Improve OEE, Save Costs with Condition Monitoring Data

When it comes to IIOT (Industrial Internet of Things) and the fourth industrial revolution, data has become exponentially more important to the way we automate machines and processes within a production plant. There are many different types of data, with the most common being process data. Depending on the device or sensor, process data may be as simple as the status of discrete inputs or outputs but can be as complex as the data coming from radio frequency identification (RFID) data carriers (tags). Nevertheless, process data has been there since the beginning of the third industrial revolution and the beginning of the use of programmable logic controllers for machine or process control.

With new advances in technology, sensors used for machine control are becoming smarter, smaller, more capable, and more affordable. This enables manufacturers of those devices to include additional data essential for IIOT and Industry 4.0 applications. The latest type of data manufacturers are outputting from their devices is known as condition monitoring data.

Today, smart devices can replace an entire system by having all of the hardware necessary to collect and process data, thus outputting relative information directly to the PLC or machine controller needed to monitor the condition of assets without the use of specialized hardware and software, and eliminating the need for costly service contracts and being tied to one specific vendor.

A photo-electric laser distance sensor with condition monitoring has the capability to provide more than distance measurements, including vibration detection. Vibration can be associated with loose mechanical mounting of the sensor or possible mechanical issues with the machine that the sensor is mounted. That same laser distance sensor can also provide you with inclination angle measurement to help with the installation of the sensor or help detect when there’s a problem, such as when someone or something bumps the sensor out of alignment. What about ambient data, such as humidity? This could help detect or monitor for moisture ingress. Ambient pressure? It can be used to monitor the performance of fans or the condition of the filter elements on electrical enclosures.

Having access to condition monitoring data can help OEMs improve sensing capabilities of their machines, differentiating themselves from their competition. It can also help end users by providing them with real time monitoring of their assets; improving overall equipment efficiency and better predicting  and, thereby, eliminating unscheduled and costly machine downtime. These are just a few examples of the possibilities, and as market needs change, manufacturers of these devices can adapt to the market needs with new and improved functions, all thanks to smart device architecture.

Integrating smart devices to your control architecture

The most robust, cost effective, and reliable way of collecting this data is via the IO-Link communication protocol; the first internationally accepted open, vendor neutral, industrial bi-directional communications protocol that complies with IEC61131-9 standards. From there, this information can be directly passed to your machine controller, such as PLC, via fieldbus communication protocols, such as EtherNET/Ip, ProfiNET or EtherCAT, and to your SCADA / GUI applications via OPC/UA or JSON. There are also instances where wireless communications are used for special applications where devices are placed in hard to reach places using Bluetooth or WLAN.

In the fast paced ever changing world of industrial automation, condition monitoring data collection is increasingly more important. This data can be used in predictive maintenance measures to prevent costly and unscheduled downtime by monitoring vibration, inclination, and ambient data to help you stay ahead of the game.

Injection Molding: Ignore the Mold, Pay the Price

Are you using a contract molding company to make your parts? Or are you doing it in house, but with little true oversight and management reporting on your molds? As a manufacturer, you can spend as much on a mold as you might for an economy, luxury or even a high-performance car. The disappointing difference is that YOU get to drive the car, while your molder or mold shop gets to drive your mold. How do you know if your mold is being taken care of as a true tooling investment and not being used as though it were disposable, or like the car analogy, like the Dukes of Hazzard used the General Lee?

What steps can you take in regard to using and maintaining a mold in production that can help guarantee your company’s ROI? How can you ensure your mold is going to produce the needed parts and provide or exceed the longevity required?

It is important for any manufacturer to understand the need for the cleaning and repair required for proper tool maintenance. The condition of your injection mold affects the quality of the plastic components produced. To keep a mold in the best working order, maintenance is critical not only when issues arise, but also routinely over time.

In the case of injection molds specifically, there are certain checks and procedures that should be performed regularly. An example being that mold cavities and gating should be routinely inspected for wear or damage. This is as important as keeping the injection system inspected and lubricated, and ensuring all surfaces are cleaned and sprayed with a rust preventative.

Figure 1 An example of the mold usage process.

The unfortunate reality is that some molders wait until part quality problems arise or the tool becomes damaged to do maintenance. One of the biggest challenges with injection molders is being certain that your molds are being run according to the maintenance requirements. Running a mold too long and waiting until problems arise to perform routine maintenance or refurbish a mold can result in added expense, supply/stock issues, longer time to market and even loss of the mold. However, when molders have a clear indication of maintenance and production timing, and follow the maintenance procedures in place, production times and overall costs can decrease.

Figure 2 Balluff add-on Mold ID monitoring and traceability system.

Creating visibility and accuracy into this maintenance timing is something today’s automation technology can now address. With todays modern, industrial automation technology, visibility and traceability can be added to any mold machine, regardless of machine age, manufacturer and manufacturing environment.

With the modern networked IIoT (industrial internet of things)-based monitoring and traceability system solutions available today, the mold can be monitored on the machine in real-time and every shot is recorded and kept on the mold itself using, for example, an assortment of industrial RFID tag options mounted directly on the mold. Mold shot count information can be tracked and kept on the mold and can be reported to operations or management using IIoT-based software running at the molder or even remotely using the internet at your own facility, giving complete visibility and insight into the mold’s status.

Figure 3 Balluff IIoT-based Connected Mold ID reporting and monitoring software screens.

Traceability systems record not only the shot count but can provide warning and alarm shot count statuses locally using visual indicators, such as a stack light, as the mold nears its maintenance time. Even the mold’s identification information and dynamic maintenance date (adjusted continuously based on current shot count) are recorded on the RFID tag for absolute tracability and can be reported in near real-time to the IIoT-based software package.

Advanced automation technology can bring new and needed insights into your mold shop or your molder’s treatment of your molds. It adds a whole new level of reliability and visibility into the molding process. And you can use this technology to improve production up-time and maximize your mold investments.

For more information, visit https://www.balluff.com/en/de/industries-and-solutions/solutions-and-technologies/mold-id/connected-mold-id/

Be Driven by Data and Decrease Downtime

Being “driven by data” is simply the act of making decisions based on real data instead of guessing or basing them on theoretical outcomes. Why one should do that, especially in manufacturing operations, is obvious. How it is done is not always so clear.

Here is how you can use a sensor, indicator light, and RFID to provide feedback that drives overall quality and efficiency.

 

Machine Condition Monitoring

You’ve heard the saying, “if it ain’t broke, don’t fix it.” However, broken machines cause downtime. What if there was a way to know when a machine is getting ready to fail, and you could fix it before it caused downtime? You can do that now!

The two main types of data measured in manufacturing applications are temperature and vibration. A sudden or gradual increase in either of these is typically an indicator that something is going wrong. Just having access to that data won’t stop the machine from failing, though. Combined with an indicator light and RFID, the sensor can provide real-time feedback to the operator, and the event can be documented on the RFID tag. The machine can then be adjusted or repaired during a planned maintenance period.

Managing Quality – A machine on its way to failure can produce parts that don’t meet quality standards. Fixing the problem before it affects production prevents scrap and rework and ensures the customer is getting a product with the quality they expect.

Managing Efficiency– Unplanned downtime costs thousands of dollars per minute in some industries. The time and resources required to deal with a failed machine far exceed the cost of the entire system designed to produce an early warning, provide indication, and document the event.

Quality and efficiency are the difference makers in manufacturing. That is, whoever makes the highest quality products most efficiently usually has the most profitable and sustainable business. Again, why is obvious, but how is the challenge. Hopefully, you can use the above data to make higher quality products more efficiently.

 

More to come! Here are the data-driven topics I will cover in my next blogs:

  • Part inspection and data collection for work in process
  • Using data to manage molds, dies, and machine tools

Tire Manufacturing – IO-Link is on a Roll

Everyone working in the mobility industry knows that the tire manufacturing process is divided up into five areas throughout a large manufacturing plant.

    1. Mixing
    2. Tire prep
    3. Tire build
    4. Curing and molds
    5. Final inspection

Naturally,  conveyors, material handling, and AGV processes throughout the whole plant.

All of these areas have opportunities for IO-Link components, and there are already some good success stories for some of these processes using IO-Link.

A major opportunity for IO-Link can be found in the curing press area. Typically, a manufacturing plant will have about 75 – 100 dual cavity curing presses, with larger plants having  even more. On these tire curing presses are many inputs and outputs in analog signals. These signals can be comprised of pressure switches, sensors, pneumatic, hydraulic, linear positioning, sensors in safety devices, thermo-couples and RTD, flow and much more.

IO-Link provides the opportunity to have all of those inputs, outputs and analog devices connected directly to an IO-Link master block and hub topography. This makes it not only easier to integrate all of those devices but allows you to easily integrate them into your PLC controls.

Machine builders in this space who have already integrated IO-Linked have discovered how much easier it is to lay out their machine designs, commission the machines, and decrease their costs on machine build time and installations.

Tire manufacturing plants will find that the visual diagnostics on the IO-Link masters and hubs, as well as alarms and bits in their HMIs, will quickly help them troubleshoot device problems. This decreases machine downtime and delivers predictive maintenance capabilities.

Recently a global tire manufacturer getting ready to design the curing presses for a new plant examined the benefits of installing IO-Link and revealed a cost savings of more than $10,000 per press. This opened their eyes to evaluating IO-Link technology even more.

Tire Manufacturing is a perfect environment to present IO-Link products. Many tire plants are looking to upgrade old machines and add new processes, ideal conditions for IO-Link. And all industries are interested in ways to stretch their budget.

 

Building Blocks of the Smart Factory Now More Economical, Accessible

A smart factory is one of the essential components in Industry 4.0. Data visibility is a critical component to ultimately achieve real-time production visualization within a smart factory. With the advent of IIoT and big-data technologies, manufacturers are finally gaining the same real-time visibility into their enterprise performance that corporate functions like finance and sales have enjoyed for years.

The ultimate feature-rich smart factory can be defined as a flexible system that self-optimizes its performance over a network and self-adapts to learn and react to new conditions in real-time. This seems like a farfetched goal, but we already have the technology and knowhow from advances developed in different fields of computer science such as machine learning and artificial intelligence. These technologies are already successfully being used in other industries like self-driving cars or cryptocurrencies.

1
Fig: Smart factory characteristics (Source: Deloitte University Press)

Until recently, the implementation or even the idea of a smart factory was elusive due to the prohibitive costs of computing and storage. Today, advancements in the fields of machine learning and AI and easy accessibility to cloud solutions for analytics, such as IBM Watson or similar companies, has made getting started in this field relatively easy.

One of the significant contributors in smart factory data visualization has been the growing number of IO-Link sensors in the market. These sensors not only produce the standard sensor data but also provide a wealth of diagnostic data and monitoring while being sold at a similar price point as non-IO-Link sensors. The data produced can be fed into these smart factory systems for condition monitoring and preventive maintenance. As they begin to produce self-monitoring data, they become the lifeblood of the smart factory.

Components

The tools that have been used in the IT industry for decades for visualizing and monitoring server load and performance can be easily integrated into the existing plant floor to get seamless data visibility and dashboards. There are two significant components of this system: Edge gateway and Applications.

2
Fig: An IIoT system

Edge Gateway

The edge gateway is the middleware that connects the operation technology and Information technology. It can be a piece of software or hardware and software solutions that act as a universal protocol translator.

As shown in the figure, the edge gateway can be as simple as something that dumps the data in a database or connects to cloud providers for analytics or third-party solutions.

Applications

One of the most popular stacks is Influxdb to store the data, Telegraf as the collector, and Grafana as a frontend dashboard.

These tools are open source and give customers the opportunity to dive into the IIoT and get data visibility without prohibitive costs. These can be easily deployed into a small local PC in the network with minimal investment.

The applications discussed in the post:

Grafana

Telegraf

Influxdb

Node-red Tutorial

IO-Link Parameterization Maximizes Functionality, Reduces Expenses

Parameters are the key to maximizing performance and stretching sensor functionality on machines through IO-Link. They are typically addressed during set up and then often underutilized because they are misunderstood. Even users familiar with IO-Link parameters often don’t know the best method for adjustment in their systems and how to benefit from using them.

Using parameters reduces setup time
During standard installation, users must acquire all manuals for each IO-Link device and then hope that all manufactures provided detailed information for parameter setting. All IO-Link device manufacturers are required to produce an IODD file, which can be accessed through the IODD Finder. This IODD file provides a list of available parameters for an IO-Link device which will save the user time by eliminating the need for manuals. Some IO-Link masters can permanently store IODD files for rapid IO-Link parameterization. This feature brings the parameters into an online webpage and gives drop down menus with all available options along with buttons for reading and writing the parameters.

1

Maximize functionality of the device
Setpoints can be changed on the fly during normal operation of the machine which will allow a device to expand to the actual range and resolution of each device. Multiple pieces of information can be extracted through IO-Link parameters that are not typically available in process data. One example being an IO-Link pressure sensor with a thermistor included so that temperature can be recorded in the parameters while sending normal pressure values. This allows the user to understand the health of their devices and gather optimal information for more visibility into their processes.

Allows for backup and recovery
IO-Link parameterization allows the user to read and write ALL parameters of IO-Link Data of the device. For example, a two-set point sensor will typically have a teach button/potentiometer that technically limits adjustment for only two parameters and cannot be backed up. This method leaves devices vulnerable to extended downtime from loss of setpoints as well as adding complex teach functions that are not precise. IO-Link parameterization on the other hand pulls teach buttons/potentiometers into the digital world with precision and repeatability. Some IO-Link master blocks have a parameter server function that backs up device parameters in case a sensor needs to be replaced, ultimately providing predictive maintenance, reduced downtime, and easy recipe changes quickly throughout the process.

Using IO Link parameterization is highly important because it reduces setup time, maximizes the functionality of the IO-Link device, and allows for backup and recovery of the parameters. Implementing parameters results in being more cost effective and decreases frustration during the installation process and required maintenance. These parameter functions are just one of the many benefits of using IO Link.

From Design and Build, to Operation and Maintenance, IO-Link Adds Flexibility

With almost twelve million installed nodes as of 2019, IO-Link is being rapidly adopted in a wide range of industries and applications. It is no wonder since it provides more flexibility in how we build and maintain our machines and delivers more data.

Design
As an IEC standard (IEC 61131-9), IO-Link provides consistency in how our devices are connected and integrated. With an already large and ever growing base of manufacturers providing IO-Link devices, we have an incredible amount of choice when it comes to what vendors we use and what devices we incorporate into our systems, all while having the confidence that all of these devices will work and communicate together. Fieldbus independent and based on a point-to-point connection using standard 3 and 4 wire sensor cables, IO-Link allows designers to replace PLC input cards in the control cabinet with machine-mounted IO-Link masters and input hubs. This technology means we are drastically less limited in how we design our machines.

Build/Commissioning
IO-Link is well known for simplifying and reducing build time of machines. Standardization of connections means that readily available double ended quick disconnect sensor cables can replace individually terminated wires, and analogue devices and devices using RS232 connections can be replaced with IO-Link devices which connect directly to a machine mounted IO-Link master or IO hub. Simplified wiring along with delivered diagnostics leads to greatly simplified network architecture and reduced build/commissioning time, as well as increased trouble shooting ability. This all leads to reduced hardware and labor cost.

When it comes to the software side of things, you might think that all of this additional functionality and flexibility increases the burden on programmers, however through the use of configuration files provided by the device manufacturers for both the IO-Link devices and the PLC, this additional functionality and data is at our fingertips with minimal time and effort. With the large adoption of IO-Link and growing manufacturer base comes great amounts of reference material, videos, example programs, and support, all of which can help to get our systems up and running quickly.

Operation
When it comes to operation IO-Link opens a world of possibilities. Bidirectional communication of not only process data but diagnostics and parameter data delivers real time visibility into the entire system during operation all the way down to the device level. Things like automated or guided changeover become possible, for example if a manufacturer produces two different parts on the same line, after the production of part A, devices can be reparameterized for production of part B with the push of a button.

Maintenance
Maintenance sees massive benefits from IO-Link thanks to reduced unplanned downtime through device diagnostics which allow for predictive maintenance practices. If a device does get damaged or fails at an inconvenient time, the issue can be found much quicker and be replaced. Once the IO-Link master recognizes that the device was replaced with the same hardware ID, it can automatically reparameterize the device.

IO-Link is already making our lives easier and providing manufacturers with more possibilities in their automated systems, and as we push into Industry 4.0 it continues to prove its value.

For more information on IO-Link and Industry 4.0 visit www.Balluff.com

 

Improve Error Proofing with IO-Link and IoT-Enabled Sensors

Though error-proofing sensors and poka yoke have been around for decades, continuing advancements related to the Industrial Internet of Things (IIoT) are making both more accessible and easier to maintain.

Balluff - The IO-Link Revolution!

Designed to eliminate product defects by preventing human errors or correcting them in real time, poka yoke has been a key to a lean manufacturing process since it was first applied to industrial applications in 1960. Today, error proofing relies far less on manual mechanisms and more on IoT-enabled error proofing sensors that connect devices and systems across the shop floor.

IoT is enabling immediate control of error-proofing devices such as sensors. This immediacy guards against error-proofing devices being bypassed, which has been a real problem for many years. Now, if a sensor needs adjustment it can be done remotely. A good example of this is with color sensors. When receiving sub-components from suppliers, colors can shift slightly. If the quality group identifies the color lot as acceptable but the sensor does not, often the color sensor is bypassed to keep production moving until someone can address it, creating a vulnerable situation. By using IoT-enabled sensors, the color sensor can be adjusted remotely at any time or from any location.

The detection of errors has been greatly improved by integrating sensors directly into the processes. This is a major trend in flexible manufacturing where poka yoke devices have to be adjusted on-the-fly based on the specific product version being manufactured. This means that buttons or potentiometers on discrete sensors are not adequate. Sensors must provide true data to the control system or offer a means to program them remotely. They must also connect into the traceability system, so they know the exact product version is being made. Connections like this are rapidly migrating to IO-Link. This technology is driving flexible manufacturing at an accelerated rate.

IO-Link enables sensors to process and produce enriched data sets. This data can then be used to optimize efficiencies in an automated process, increase productivity and minimize errors.

Additionally, the easily expandable architecture built around IO-Link allows for easy integrations of poka yoke and industrial identification devices. By keeping a few IO-Link ports open, future expansion is easy and cost effective. For poka yoke, it is important that the system can be easily expanded and that updates are cost-effective.

Using Data to Drive Plant Productivity

What is keeping us from boosting productivity in our plants to the next level? During a recent presentation on Industry 4.0 and IIoT, I was asked this question.

The single biggest thing, in my opinion, that is keeping us from boosting productivity to the next level is a lack of DATA. Specifically, data about the systems and the processes.

1

Since the beginning of time, we have been hungry for efficiency. While early man invented more efficient methods to hunt and survive, today we are looking for ways to produce more efficiently in our plants with minimum or zero waste. After exhausting all the avenues for lean operations on plant procedures and our day-to-day activities, we are now looking at how we can recover from unanticipated downtime quickly. I am sure in future we will be seeking information on how can we prevent the downtime altogether.

There are plentiful of reasons for downtime. Just a few examples:

  1. Unavailability of labor – something we might be experiencing these days, when the COVID-19 pandemic has reduced some labor forces
  2. Unavailability of raw materials
  3. Unavailability of replacement components
  4. Unavailability of assets
  5. Failures in machines/components

In this list, the first two reasons, are beyond the scope of this blog’s intentions and frankly somewhat out of controls from the production standpoint.

The next two reasons, however, are process related and the last one is purely based on the choices we made. These three reasons, to a certain extent, can be reduced or eliminated.

If the downtime is process related, we can learn from them and improve our processes with so called continuous improvement initiatives. We can only do these continuous improvements based on observable factors (a.k.a. data) and we cannot improve our processes based on speculations. Well, I shouldn’t say “cannot”, but it will be more like a fluke or luck. It is apt to say “ what can’t be measured, can’t be improved!”

A good example for elaborating my point is change-over in the plant to produce a different product. Unless there is a good process in place for ensuring all the change-over points are properly addressed and all the change parts are correctly installed and replaced, the changeover time could and will likely lead to tremendous amounts of lost productivity. Secondly, if these processes are done manually and not automated, that is also a loss of productivity or, as I like to say, an area for continuous improvement to boost productivity based on observable facts. Sometimes, we take these manual change-overs as a fact of life and incorporate that time required as a part of “planned” downtime.  Of course, if you do change-overs once a year – it may be cost effective to keep the process manual even in today’s situation. But, if your plant has multiple short batch productions per day or per week, then automating the changeovers could significant boost productivity. The cost benefit analysis should help prove if it is continuous improvement or not.

Assets are an important part of the equation for smooth operations. An example would be molds in the stamping plant or cutting-deburring tools in metal working plants. If plants have no visibility or traceability of these important assets for location, shape or form, it could lead to considerable downtime. The calibration data of these tools or number of parts produced with the tool are also important pieces of data that needs to be maintained for efficient operations. Again, this is data about the system and the integration of these traceability initiatives in the existing infrastructure.

Failures in machines or components could cause severe downtime and are often considered as unavoidable. We tackle these failures in a two-step approach. First, we hunt for the problem when it is not obvious, and two, we find the replacement part in the store room to change it out quickly. And, as process improvement, we schedule preventative maintenance to inspect, lubricate and replace parts in our regular planned downtime.

The preventative maintenance is typically scheduled based on theoretical rate of failure. This is a good measure, especially for mechanical components, but, predictive or condition-based maintenance usually yields higher returns on productivity and helps keep plants running smooth. Again, predictive maintenance relies on data about the condition of the system or components. So, where is this data and how do we get to it?

Standardization of interfaces is another important component for boosting productivity. In my next blog, I will share how IO-Link as a technology can help address all of these challenges and boost productivity to the next level.