From Wired to Wireless Automation Advancements in Automotive Manufacturing

Looking back, the days of classic muscle cars stand out as a remarkable period in automotive history. Consider how they were built, including every component along the assembly line connected through intricate wiring, resulting in prolonged challenges related to both wiring and maintenance. Advancements in technology led to the introduction of junction blocks, yet this didn’t entirely solve the persistent problems associated with time and connections.

In the mid-2000s, a collaborative effort among multiple companies resulted in the development of the IO-Link protocol. This protocol effectively tackled the wiring and maintenance issues. Since its inception, IO-Link has continued to progress and evolve.

In 2023, we’re taking the next step with a wireless IO-Link master block.

In modern manufacturing, the process involves using independently moving automated guided vehicles (AGVs), also known as skillets. These AGVs are responsible for performing various tasks along the production line before completing their circuit and returning to their initial position. Initially, when these AGVs were integrated, each of these skillets was equipped with a programmable logic controller (PLC), which incurred significant expenses and extended the setup time. Additionally, the scalability of this system was limited by the available IP addresses for the nodes.

Demand for wireless IO-Link blocks

In recent years, there has been a growing demand for wireless IO-Link blocks. Now, a solution to meet this demand is available. The wireless IO-Link block works in a manner similar to the existing current blocks but without the need for a PLC, simplifying wiring and using existing Wi-Fi infrastructure.

Imagine a conveyor scenario where numerous AGVs follow a designated path, each with a hub attached. The setup would look something like this: up to 40 hubs communicating simultaneously with a central master. Each hub has the capacity to accommodate up to eight connected devices, resulting in a total of 320 distinct IO points managed by a single IO-Link master.

Communication among these blocks employs a protocol akin to that of a cell phone. As an AGV transitions from one master hub to another, it continues to transmit its data. Within each hub, an identity parameter not only designates the specific hub but also identifies the associated skillets and the location within the manufacturing plant.

Transitioning to a wireless system leads to a substantial reduction in your overall cost of ownership. This includes decreased setup times, simplified troubleshooting, lower maintenance efforts, and a reduced need for spare parts.

We are in an exciting time of technological advancement. Make sure you are moving alongside us!

Driving Efficiency and Reliability in Automotive Manufacturing

In the days of Henry Ford – when you could get a car in any color as long it was black – the assembly line involved grabbing a part and putting it on the car. Today, there are literally thousands of iterations of car options, drastically increasing the need for tracking and traceability of all parts that go into the cars. How do you ensure that the components going into vehicles are the correct ones?

Limitations of traditional barcode stickers

The answer is ever-evolving. At first, automotive companies were printing off one-dimensional barcodes on stickers – a time-consuming, labor-intensive, and often wasteful process. It was necessary for an individual to print a stack of stickers hoping that they were correct and in the right order, manually put them on the parts, and hope they wouldn’t fall off. Unfortunately, many times they did fall off, leaving the operators without a way to track the parts. And once the part hit the assembly line, the operator had to manually scan the barcode, which typically took six to 10 seconds.

The power of optical identification sensors

Modern automotive companies are automating this process with sensors for optical identification. They can reliably and precisely read both 1D and 2D bar codes. This two-step process includes:

    1. Using lasers (CO2 for plastic or Fiber for metal), a Direct Part Mark (DPM) is permanently etched onto the component. This DPM remains readable throughout the component’s lifespan.
    2. Once marked, a nest is created on the component, equipped with two to four cameras. These cameras capture visible 2D data matrices or 1D sticker barcodes from up to 600mm away. All data is transmitted via IO-Link to the PLC. This process eliminates scanning errors and reduces scrap.

Advanced condition monitoring for quality and efficiency

In addition to code reading functions, advanced condition monitoring capabilities have become an essential part of ensuring quality and efficiency in automotive manufacturing. These capabilities enable the continuous monitoring of various parameters related to the components and their operational conditions. Sensors equipped with advanced condition monitoring features, such as temperature sensors, vibration sensors, humidity sensors, inclination sensors, signal quality sensors, and operating time sensors, are deployed alongside the code reading sensors.

Overall, the combination of code reading sensors and advanced condition monitoring capabilities ensures not only the correct identification and traceability of components but also enhances overall quality control, reduces downtime, minimizes scrap, and improves the reliability and performance of the final products.

Click here for more information on optical code readers with IO-Link and condition monitoring.

Reducing Assembly Line Mistakes With the Error Proofing Platform Station

About 18 months ago, one of the major automotive companies came to the Indicon Conference looking for a way to decrease mistakes on the assembly line. They found a solution in a concept named the Error Proofing Platform Station (EPP).

How it works

The EEP works by using a bar code reader, in this case a scanner, to verify that the correct parts are being used in the assembly process. The scanner connects to an RS232-to-digital-converter module, and from there to an IO-Link networking block which enables two-way communication of information with the PLC. IO-Link blocks can connect hundreds of devices, versus traditional blocks that can only connect eight to sixteen devices. This greatly simplifies the hardware, cabling and installation costs.

EEP station design

The overall design of this EPP station grabbed the automotive company’s attention for several reasons.  It is effective both in its simplicity as well as the small footprint that it takes up. The design of the components allows it to sit on the plant floor instead of having to be installed in a cabinet like previous designs. They especially liked the wiring design where a single cable goes from the IO-Link block at is managed by a single IP address back to the PLC. Should one of the devices fail, you simply replace a single cable or device and move on.

The old days of unwinding the cables and spending hours trying to decipher which cable goes to which device are gone.

The current roll-out has been at four separate plants with plans for 10 more in the next four years. Expansion of this innovation is being targeted toward the other major manufacturers.