Sensing Ferrous and Non-Ferrous Metals: Enhancing Material Differentiation

Detecting metallic (ferrous) objects is a common application in many industries, including manufacturing, automotive, and aerospace. Inductive sensors are a popular choice for detecting metallic objects because they are reliable, durable, and cost-effective. Detecting a metallic object, however, is not always as simple as it seems, especially if you need to differentiate between two metallic objects. In such cases, it is crucial to understand the properties of the metals you are trying to detect, including whether they are ferrous or non-ferrous.

Ferrous vs. non-ferrous

Ferrous metals, such as mild steel, carbon steel, stainless steel, cast iron, and wrought iron, contain iron. They are typically magnetic, heavier, and more likely to corrode than non-ferrous metals, which do not contain iron. Aluminum, copper, lead, zinc, nickel, titanium, and cobalt are examples of non-ferrous metals. They are typically nonmagnetic, lightweight, and less likely to corrode.

Sensing ferrous and non-ferrous metal:

When it comes to detecting ferrous and non-ferrous metals using inductive sensors, the reduction factor plays a crucial role. The reduction factor is the ratio of the sensor’s effective sensing distance for a given metal to the sensor’s effective sensing distance for steel. In other words, it is the degree to which a metal affects the sensing range of an inductive sensor. Ferrous metals typically have less of an effect on sensing range than non-ferrous metals because inductive sensors function based on the law of induction, and magnetic metals are more likely to interact with the magnetic field created by the sensor.

The reduction factor for each type of metal varies depending on the metal’s properties. Ferrous metals typically have a higher reduction factor than non-ferrous metals, which means they can be detected from a greater distance. For example, both steel and stainless steel have a reduction factor of 0.6 to 1, which means they can be detected from the full switching distance of the sensor of 4 mm. In contrast, non-ferrous metals, such as aluminum, copper, and brass, have a lower reduction factor of 0.25 to 0.5, which means they can only be detected from a fraction of the operating switching distance, typically 1 to 2 mm.

Understanding the reduction factor for each metal allows you to answer the question of what happens when you need to differentiate between two metallic parts. If one metal is ferrous and the other is non-ferrous, then you can place the sensor at a distance that will detect the ferrous metal but not the non-ferrous metal. However, this may not be an efficient solution if the metals have similar reduction factors, or if you need to detect the non-ferrous metal over the ferrous metal.

Using ferrous-only or non-ferrous-only sensors

The better solution is to use a ferrous-only or non-ferrous-only sensor. These sensors are specifically designed to detect only one type of metal and ignore the other type, resulting in a reduction factor of zero. Ferrous-only sensors detect only ferrous metals, and their reduction factors range from 0.1 to 1 for steel and stainless steel, while the reduction factors for non-ferrous metals such as aluminum, copper, and brass are zero. Non-ferrous-only sensors detect only non-ferrous metals, and their reduction factors range from 0.9 to 1.1 for aluminum, copper, and brass, while the reduction factors for ferrous metals are zero. Using ferrous-only or non-ferrous-only sensors eliminates the need to adjust the mounting distance of a standard inductive sensor to detect a ferrous metal over a non-ferrous metal.

Overall, selecting the right sensor for your application depends on the type of metals you need to differentiate and detect. If you are dealing with ferrous and non-ferrous metals, you can use a standard inductive sensor, but you need to be aware of the reduction factor for each metal type and adjust the mounting distance accordingly. If you need to detect only one type of metal, however, a ferrous-only or a non-ferrous-only sensor is the better option. These sensors are specially designed to ignore the other metal type, eliminating the need to adjust the mounting distance.

By understanding the differences between ferrous and non-ferrous metals and the capabilities of different sensors, you can optimize the metal detection system for maximum efficiency and accuracy.

Choosing a Contactless Sensor to Measure Objects at a Distance

Three options come to mind for determining which contactless sensor to use when measuring objects at a distance: photoelectric sensors, ultrasonic sensors, and radar detection. Understanding the key differences among these types of technologies and how they work can help you decide which technology will work best for your application.

Photoelectric sensor

The photoelectric sensor has an emitter that sends out a light source. Then a receiver receives the light source. The common light source LED (Light Emitting Diodes), has three different types:

    • Visible light (usually red light) has the shortest wavelength, but allows for easy installment and alignment as the light can be seen.
    • Lasers are amplified beams that can deliver a large amount of energy over a distance into a small spot, allowing for precise measurement.
    • Infrared light is electromagnetic radiation with wavelengths longer than visible light, generally making them invisible to the humans. This allows for infrared to be used in harsher environments that contain particles in the air.

Along with three types of LEDs, are three models of photoelectric sensors:

    • The retro-reflective sensor model includes both an emitter and receiver in one unit and a reflector across from it. The emitter sends the light source to the reflector which then reflects the light back to the receiver. When an object comes between the reflector and the emitter, the light source cannot be reflected.
    • The through-beam sensor has an emitter and receiver in two separate units installed across from the emitter. When an object breaks the light beam, the receiver cannot receive the light source.
    • The diffuse sensor includes an emitter and receiver built into one unit. Rather than having a reflector installed across from it the light source is reflective off the object back to the receiver.

The most common application for photoelectric sensors is in detecting part presence or absence. Photoelectric sensors do not work well in environments that have dirt, dust, or vibration. They also do not perform well with detecting clear or shiny objects.

Ultrasonic sensor

The ultrasonic sensor has an emitter that sends a sound wave at a frequency higher than what a human can hear to the receiver.  The two modes of an ultrasonic sensor include:

    • Echo mode, also known as a diffused mode, has an emitter and receiver built into the same unit. The object detection works with this mode is that the emitter sends out the sound wave, the wave then bounces off the target and returns to the receiver. The distance of an object can be determined by timing how long it takes for the sound wave to bounce back to the receiver.
    • The second type of mode is the opposed mode. The opposed mode has the emitter and receiver as two separate units. Object detection for this mode works by the emitter will be set up across from the receiver and will be sending sound waves continuously and an object will be detected once it breaks the field, similarly to how photoelectric sensors work.

Common applications for ultrasonic sensors include liquid level detection, uneven surface level detection, and sensing clear or transparent objects. They can also be used as substitutes for applications that are not suitable for photoelectric sensors.

Ultrasonic sensors do not work well, however, in environments that have foam, vapors, and dust. The reason for this is that ultrasonic uses sound waves need a medium, such as air, to travel through. Particles or other obstructions in the air interfere with the sound waves being produced. Also, ultrasonic sensors do not work in vacuums which don’t contain air.

Radar detection

Radar is a system composed of a transmitter, a transmitting antenna, a receiving antenna, a receiver, and a processor. It works like a diffuse mode ultrasonic sensor. The transmitter sends out a wave, the wave echoes off an object, and the receiver receives the wave. Unlike a sound wave, the radar uses pulsed or continuous radio waves. These wavelengths are longer than infrared light and can determine the range, angle, and velocity of objects. radar also has a processor that determines the properties of the object.

Common applications for radar include speed and distance detection, aircraft detection, ship detection, spacecraft detection, and weather formations. Unlike ultrasonic sensors, radar can work in environments that contain foam, vapors, or dust. They can also be used in vacuums. Radio waves are a form of electromagnetic waves that do not require a transmission medium to travel. An application in which radar does not perform well is detecting dry powders and grains. These substances have low dielectric constants, which are usually non-conductive and have low amounts of moisture.

Choosing from an ultrasonic sensor, photoelectric sensor, or radar comes down to the technology being used. LEDs are great at detecting part presences and absence of various sizes. Sound waves are readily able to detect liquid levels, uneven surfaces, and part presence. Electromagnetic waves can be used in environments that include particles and other substances in the air. It also works in environments where air is not present at all. One technology is not better than the other; each has its strengths and its weaknesses. Where one cannot work, the others typically can.