Automation is “Rolling Out” in the Tire Industry

Automation is everywhere in a tire plant – from the old manual plants and mid-hybrid automated plants to the newest plants with the latest automation technology all over the world.

Industry challenges

Some tire industry automation challenges are opportunities for automation suppliers and machine builders. These can vary from retrofitting old machines and designing new machines to including smarter components to bring their production into the IIoT.

Plants want to save CapX dollars on new machines, so they are looking to upgrade old ones. Tire plants are learning from the past. They are limited by their older technology, but it has been hard to upgrade and integrate new technology, so there are long-term needs for adding flexible automation on machines. This requires new processes and recommissioning machines quickly. A good example of this is the addition of a vision system to improve quality inspections.

More automation is also needed due to a lack of skilled labor in the industry combined with the desire for higher throughout. The addition of robots on the line can aid with this. Plants can also simplify their wiring by migrating away from control panel i/o/analog to an IP67 network and IO-Link master and hubs.

The use of IO-Link also allows for more continuous condition monitoring. There is an increased need for quality inspections and process improvements. Plants are collecting more data and learning how to use it and analytics (Industry 4.0, IIoT) to achieve operational excellence. Plants need more technology that supports preventive and predictive failure solutions.

Additionally, there are automation needs on new machinery as tire designs are in an evolutional growth/change period – in the electric vehicle (EV) market, for example, where rapid change is happening across all vehicle manufacturing. Smart tires are being designed using RFID and sensors embedded in the tire ply.

Successfully matching up automation products to meet plant needs first requires understanding the plant’s main processes, each with millions of dollars of automation needs.

How tires are made

    1. Raw materials logistics – raw materials are transported to the mixing and extrusion areas for processing.
    2. Mixing and extrusions – up to 30 ingredients are mixed together for a rubber blend tire.
    3. Tire components – extruded rubber ply is measured and cut to size to meet the needs of the specific tire and then loaded onto reels feeding the tire building machines.
    4. Tire build machines – tires are built in stages from the inside out. They are crated without tread and transferred to the curing press machines.
    5. Tire curing press machines – here, the “green” tires are vulcanized, a chemical process that makes the tire more durable. Tire parts are then compressed together into the final shape and tread pattern.
    6. Inspection and test machines – tires are quality tested and undergo visual, balance, force, and X-ray inspections.
    7. Logistics material handling, conveyor, ASRS, AGV – finished tires are taken to the warehouse for sorting and shipping.

In the past, not many people outside the tire industry understood the complexity and automation needs of these high volume, high quality, highly technical plants. Tires are so valuable to the safety of people using them that manufacturers must be held to the highest standards of quality. Automation and data collection help ensure this.

In the meantime, check out these futuristic tires and imagine all the automation to manufacture them.

RFID Gaining Traction in Tire Manufacturing

RFID is one of the hottest trending technologies in the tire industry. It has the potential to increase efficiency in tire production and logistics processes and gather large amounts of data for IIoT.

This technology will:

  • Reveal transparency deep in the processes
  • Minimize the number of rejected tires
  • Improve production processes for fewer failures
  • Increase control of materials
  • Improve the overall quality of individual tires

The challenge of using RFID in the tire industry is dealing with the harsh environments of some of the production areas in automotive plants. But the benefits of RFID to the tire industry are becoming more and more a reality. Suppliers of RFID are talking to tire manufacturing engineers, automation teams, material handling teams and R&D development engineers to develop better tools. For now, here are some examples of where RFID can be implemented in the tire creation process to improve efficiency, quality and cost.

In the mixing process, RFID “labels” are applied to all the chemicals and rubber compounds to assure the mixing of the right recipe of materials. RFID readers can be mounted on TBMs (Tire Build Machines), which are located before the curing press process, to assure the right material reels, parts and tools are in place before the expensive tire build process occurs.

There is also a growing need for RFID in the curing and mold processes. It important to manage the molds and the parts of the mold, like the bead rings, mold containers and mold segments. These are very expensive and there are hundreds in the average plant. Tags need to be able to sustain temperatures above 300 °F continuously for 8 hour shifts with little to no cooling down time.

RFID is an excellent tool to monitor material flow throughout the whole manufacturing process. RFID can be added to a trolly, AGV, conveyors and hook-chain conveyors.

While RFID is already being implemented by some tire manufacturers, there is much room for much growth in this conservative industry. As more manufacturers lean into IIoT and the need for data, RFID will surely be used more and more often.

The tire industry is excited to roll in RFID technology and pumped up to implement it where it makes the most sense and ROI dollars.

For more information about the tire industry, visit https://www.balluff.com/local/us/industries-and-solutions/industry/mobility/tire-industry/

Tire Manufacturing – IO-Link is on a Roll

Everyone working in the mobility industry knows that the tire manufacturing process is divided up into five areas throughout a large manufacturing plant.

    1. Mixing
    2. Tire prep
    3. Tire build
    4. Curing and molds
    5. Final inspection

Naturally,  conveyors, material handling, and AGV processes throughout the whole plant.

All of these areas have opportunities for IO-Link components, and there are already some good success stories for some of these processes using IO-Link.

A major opportunity for IO-Link can be found in the curing press area. Typically, a manufacturing plant will have about 75 – 100 dual cavity curing presses, with larger plants having  even more. On these tire curing presses are many inputs and outputs in analog signals. These signals can be comprised of pressure switches, sensors, pneumatic, hydraulic, linear positioning, sensors in safety devices, thermo-couples and RTD, flow and much more.

IO-Link provides the opportunity to have all of those inputs, outputs and analog devices connected directly to an IO-Link master block and hub topography. This makes it not only easier to integrate all of those devices but allows you to easily integrate them into your PLC controls.

Machine builders in this space who have already integrated IO-Linked have discovered how much easier it is to lay out their machine designs, commission the machines, and decrease their costs on machine build time and installations.

Tire manufacturing plants will find that the visual diagnostics on the IO-Link masters and hubs, as well as alarms and bits in their HMIs, will quickly help them troubleshoot device problems. This decreases machine downtime and delivers predictive maintenance capabilities.

Recently a global tire manufacturer getting ready to design the curing presses for a new plant examined the benefits of installing IO-Link and revealed a cost savings of more than $10,000 per press. This opened their eyes to evaluating IO-Link technology even more.

Tire Manufacturing is a perfect environment to present IO-Link products. Many tire plants are looking to upgrade old machines and add new processes, ideal conditions for IO-Link. And all industries are interested in ways to stretch their budget.

 

How Cameras Keep Tire Manufacturers From Spinning Their Wheels

Tires being transported between the curing presses and the staging area before their final inspection often become clustered together. This jam up can cause imperfections to the tires and damage to the conveyors. To alleviate this problem, some tire manufacturers have installed vision systems on their conveyors to provide visual feedback to their production and quality teams, and alert them when the tires start to get too close together.

A vision system can show you alerts back in your HMI by using inputs and outputs built into the camera or use an IO-Link port on the camera to attach a visual display, for example a SmartLight with audible and flashing alerts enabled. Once you see these alerts, the PLC can easily fix the issue from the program or a maintenance worker or engineer can quickly respond to the alert.

Widespread use of smart vision cameras with various pixel options has become a trend in tire manufacturing. In additional to giving an early alert to bunching problems, vision systems can also capture pictures and data to verify that tires were cleared all the way into final inspection. Although tire machine builders are being asked to incorporate vision systems into their machines during the integration process, it is more likely for systems to be added in plants at the application level.

Vision systems can improve production throughput, quality issues and record production data about the process for analytics and analysis down the road. Remember a tire plant usually consists of these processes in their own large section of the plant and involves many machines in each section:

  • Mixing
  • Tire Prep
  • Tire Build
  • Curing
  • Final Inspection

Each one of these process areas in a plant can benefit from the addition of vision systems. Here are a few examples:

  • Mixing areas can use cameras as they mill rubber and detect when rubber sheets are off the rollers and to look for engraved information embedded in the rubber material for logistics and material flow to the proper processes.
  • Tire Prep can use cameras to ensure all the different strand colors of steel cords are embedded or painted on the rubber plies before going to tire build process.
  • Tire Build can use vision to detect the side-wall beads are facing the right direction and reading the embedded position arrows on the beads before tire plies are wrapped around them.
  • Curing area can use vision to monitor tire clusters on conveyors and make sure they are not too close to each other by using the measuring tool in the camera software.
  • Final Inspection can use vision to read barcodes, QR codes, detect colors of embossed or engraved serial numbers, detect different color markings and shape of the markings on the tire.

The use of machine vision systems can decrease quality issues by pinpointing errors before they make it through the entire production process without detection.