Industry 4.0: What It Is and How It Improves Manufacturing

Industry 4.0 is a common buzzword that is thrown around along with IIoT and Process visualization but what does that mean and how is it integrated into a manufacturing process? Industry 4.0 refers to the fourth industrial revolution. The first dealing with mechanization and the use of steam and water power, the second referring to mass production using assembly lines and electrical power, and the third referring to automated production and the use of computers and robots. Industry 4.0 takes us a step beyond that to smart factories that include automation and machine learning. Again, buzzwords that can be hard to visualize.

A commonplace example of this would be self-driving cars. They are autonomous because they don’t need a person operating them and they take, in real time, information about their surroundings and use that to determine a course of action. But how can this type of technology affect a manufacturing process?

Industry 4.0 requires data to be analyzed. This is where IO-Link comes into play. With IO-Link, you are able to get information from a sensor more than than just an output signal when it detects a part. A photoelectric sensor is a good example of this. The basic way a photoelectric sensor works an output is given depending on the amount of light being received. If the sensor happens to be in a dirty/dusty environment, there could be dirt collecting on the lens or floating in the air which effects the amount of light being received. An IO-Link (smart) sensor can not only fire an output when detection occurs but can give information about the real time gain of the sensor (how much light is being received). If the gain drops below a certain amount because of dirt on the lens or in the air, it can send another signal to the controller indicating the change in gain.

Now that we have more data, what are we going to do with it?

We now have all of this data coming from different parts of the machine, but where does it go and what do we do with it? This is where process visualization comes into play. We are able to take real time data from a machine and upload it to a database or system that we can monitor outside of the plant floor. We can know if a machine is running properly without having to physically see the machine. The information can also give us indications about when something might fail so preventative maintenance can take place and reduce downtime.

As more manufacturing processes are becoming automated, machines are becoming more and more complex. A machine might be needed to run 6-7 different lines rather than just 1 or 2 which can involve things like tool change or settings changes. Then, more checks need to be in place, so the right process is running for the right part. Industry 4.0 is how we are able to gather all this information and use it to increase efficiency and productivity.

Palletized Automation with Inductive Coupling

RFID is an excellent way to track material on a pallet through a warehouse. A data tag is placed on the pallet and is read by a read/write head when it comes in range. Commonly used to identify when the pallet goes through the different stages of its scheduled process, RFID provides an easy way to know where material is throughout a process and learn how long it takes for product to go through each stage. But what if you need I/O on the pallet itself or an interchangeable end-of-arm tool?

Inductive Coupling

1

Inductive coupling delivers reliable transmission of data without contact. It is the same technology used to charge a cell phone wirelessly. There is a base and a remote, and when they are aligned within a certain distance, power and signal can be transferred between them as if it was a standard wire connection.

2

When a robot is changing end-of-arm tooling, inductive couplers can be used to power the end of arm tool without the worry of the maintenance that comes with a physical connection wearing out over time.

For another example of how inductive couplers can be used in a process like this, let’s say your process requires a robot to place parts on a metal product and weld them together. You want I/O on the pallet to tell the robot that the parts are in the right place before it welds them to the product. This requires the sensors to be powered on the pallet while also communicating back to the robot. Inductive couplers are a great solution because by communicating over an air gap, they do not need to be connected and disconnected when the pallet arrives or leaves the station. When the pallet comes into the station, the base and remote align, and all the I/O on the pallet is powered and can communicate to the robot so it can perform the task.

Additionally, Inductive couplers can act as a unique identifier, much like an RFID system. For example,  when a pallet filled with product A comes within range of the robot, the base and remote align telling the robot to perform action A. Conversely, when a pallet loaded with product B comes into range, the robot communicates with the pallet and knows to perform a different task. This allows multiple products to go down the same line without as much changeover, thereby reducing errors and downtime.