Flexibility Through Automated Format Changes on Packaging Machines

Digitalization does not stop at the packaging industry. There is a clear trend toward more individual packaging and special formats. What does this mean for packers and packaging machine manufacturers? The variants increase for every single packer, and this leads to a decreased batch size. The packer needs highly flexible machines, which he can easily adjust to the different formats and special variants. The machine manufacturer, in turn, must make these flexible machines available. What does this format change look like? Which technologies can support the packer optimally?

There are two different format adjustment tasks to perform. One is the adjustment of guide rails, side belts or link chains so that they can be adapted to the new format. The other is the changing of parts when a new format is to be produced.

Both tasks have different demands concerning automation technology and therefore there are different solutions available.

Format adjustment

Format adjustment is the adjustment of guide rails, side belts or link chains. In order to carry out this adjustment quickly, safely and error-free, precise position information is required. This recorded position information can then be used to support manual adjustment on the display unit or it can be transferred to the PLC for fully automatic adjustment. One possible solution is to use different position measuring systems. Various standardized interfaces are available as transmission formats, including IO-Link.

Fast format changes in secondary packaging.png
Fast format changes in secondary packaging

IO-Link has ideal features that are predestined for format adjustment: sufficient speed, full access to all parameters, automatic configuration, and absolute transmission of measured values. This eliminates the need for time-consuming reference runs. Since the machine control remains permanently traceable, the effort for error-prone written paper documentation is also saved.

One example for a non-contact absolute position measuring system

BML SL1, IO-Link

A magnetic encoded position measuring system is ideally suited for position detection during format adjustment. It is insensitive to dust, dirt and moisture, offers high accuracy and a measuring length of up to 8,190 mm. Therefore, the position determination and the speed control during the change of guide rails, sidebands or link chains are no problem.

For more information read our previous blog post “Boost Size-Change Efficiency with IO-Link Magnetic Encoders and Visualization”.

Changeable part detection

When changing to a different format size, it is often necessary to not only adjust guide rails but to also replace changeable parts. Machines are becoming more and more flexible, which means that the number of changeable parts per machine is growing.  It is becoming increasingly difficult for the machine operator to find the right part and even more difficult to find the correct mounting position. This conceals some avoidable sources of error. If the replacement part is installed incorrectly, it can cause machine damage, which can lead to downtime.

Therefore, a fast recognition of changeable parts is all about reliably detecting the changeable part at the correct position in the machine. It is also important to make it as easy as possible for the operator to detect possible faults before they happen via a visualization system.

One way of identifying exchangeable parts is industrial identification with RFID.

The right part at the right position

When changing a machine over to a new format you can use RFID data carriers or barcodes to ensure that the correct new parts are being used. Vision sensors also detect whether the part was installed correctly or incorrectly. These solutions help you prevent errors and machine damage, which in turn increases throughput and reduces production costs.

Implement predictive maintenance

With RFID data carriers, the operating times of each change part can be documented directly on the part itself. If a part needs to be cleaned, replaced or reworked, a notification or alarm is issued in the machine controller before fault conditions can arise. RFID data carriers also allow regular cleaning cycles to be logged.

Automate machine settings

Since you can store the individual setting parameters for the change part on the data carrier, the part itself also provides the information to the machine controller. Thus, the change part can trigger a format change in the PLC and change the production process. This is an important step toward intelligent production in the Industry 4.0 concept.

Simple visualization enables expert free operation

With an LED signal lamp, the operator can recognize the operating status of the machine quickly, easily and at a glance. Among other things, it serves to monitor the operating windows and signals whether all settings have been made correctly. The segments of the signal lamp can be configured so that one machine lamp meets a wide range of requirements.

Summary

Format adjustment involves changing guide rails, sidebands or link chains due to a new format. This can be semi-automated or fully automated on the machines. It requires displacement measuring systems whose sensors provide feedback on the respective position.

If format parts on the machine have to be replaced, it must be ensured that the correct changeable part is installed at the correct position in the machine. Industrial identification systems such as RFID are suitable for this purpose. Each changeable part is equipped with a tag and, with the help of the read/write heads, it recognizes whether the correct changeable part is installed in the correct place.

Both automation options offer the following advantages:

  • Short set-up times and increased system productivity
  • Efficient error prevention
  • Increased machine flexibility
  • Avoidance of machine damage due to wrong parts when starting up the machine
  • Simple visualization for the operator

To learn more about format change visit www.balluff.com.

When to Use Hygienic Design vs. Washdown

Both washdown and hygienic design are common terms used in the food and beverage industry, and are increasingly being used in the packaging industry. These terms are used in different scenarios and easily confused with each other. What exactly are the differences between them, and in what applications are each used?

Why are hygienic design and washdown needed?

The consumer, and more specifically, the health of the consumer is the core concern of the food and beverage industry. Contaminated food can pose a danger to life and limb. A product recall damages the image of a company, costs a lot of money and as a worst case scenario can lead to the complete closing of the company. To prevent such scenarios, a producers primary objective is to make sure that the food is safe and risk-free for the consumer.image 1

In food manufacturing and packaging plants, a differentiation is made between the food area (in direct contact with the product), the spray area (product-related) and the non-food area. The requirements of the machine components are different depending on which area they are in.

The Food Area

In the food area the food is unpacked, or partially unpacked, and particularly susceptible to contamination. All components and parts that may come in contact with the food must not adversely affect this, e.g. in terms of taste and tolerability.

The following needs to be considered to avoid contamination:

  • Hygiene in production
  • Use of food contact materials
  • Food-grade equipment in Hygienic Design

These requirements result in the need for components that follow the hygienic design rules. If the component supplier fulfills these rules, the machine manufacturer can use the components and the producer can use the machines without hesitation.

Hygienic Design

Many component suppliers offer different solutions for hygienic design and each supplier interprets the design differently. So what does hygienic design mean? What must be included and which certifications are the right ones?

  • The material used must be FoodContact Material (FCM). This means that the material is non-corrosive, non-absorbent and non-contaminating, disinfectable, pasteurisable and sterilizable.
  • Seals must be present to prevent the ingress of microorganisms.
  • The risk of part loss must be minimized.
  • Smooth surfaces with a radius of < 0.8 μm are permitted.
  • There must be no defects, folds, breaks, cracks, crevices, injection-molded seams, or joints, even with material transitions.
  • There must be no holes or depressions and no corners of 90°.
  • The minimum radius should be 3 mm.

Supporting institutions and related certifications

There are different institutions which confirm and verify the fulfillment of these rules. They also support the companies during the development process.

image2

EHEDG – The European Hygienic Engineering and Design Group offers machine builders and component suppliers the possibility to evaluate and certify their products according to Hygienic Design requirements.

image33A – 3-A Sanitary Standards, Inc. (3-A SSI) is an independent, non-profit corporation in the U.S. for the purpose of improving hygiene design in the food, beverage and pharmaceutical industries. The 3-A guidelines are intended for the design, manufacture and cleaning of the daily food           accessories used in handling, manufacturing and packaging of edible products with high hygiene requirements.

image4FDA – The Food and Drug Administration is a federal agency of the United States Department of Health and Human Services, one of the United States federal executive departments. Among other things, the FDA is responsible for food safety.

What does a hygienic design product look like?

Below is an example of a hygienic design product.

image5

  • Stainless steel housing VA 1.4404
  • Laser marking
  • Protection class IP69K (IEC 60529)
  • Active surface made of PEEK
  • EHEDG conform
  • FDA conform

Since the product contacting area is associated with high costs for the plant manufacturer and the operator, it’s beneficial to keep it as small as possible.

The Spray Area

In the spray area, there are different requirements than in the food area.
Depending on the type of food that is processed, a further distinction is made between dry and wet areas.

image6
Areas in the food and beverage production

Here we are talking about the washdown area. Washdown capable areas are designed for the special environmental conditions and the corresponding cleaning processes.

Washdown

Components which fulfill washdown requirements usually have the following features:

  • Cleaning agent/corrosion resistant materials (often even food compliant, but this is not a must)
  • High protection class (usually IP 67 and IP 69K)
  • Resistant to cleaning agents
image7
Photoelectric sensor for washdown requirements

Ecolab and Diversey are two well-known companies whose cleaning agents are used for appropriate tests:

Ecolab Inc. and Diversey Inc. are US based manufacturers of cleaning agents for the food and beverage industry. Both companies offer certification of equipment’s resistance to cleaning agents. These certificates are not prescribed by law and are frequently used in the segments as proof of stability.

The washdown component must also be easy and safe to clean. However, unlike the hygienic design, fixing holes, edges and threads are permitted here.

For basic information on IP69K see also this previous blog post.

To learn more about solutions for washdown and hygienic design click here.