Capacitive Prox Sensors Offer Versatility for Object and Level Detection

When you think of a proximity sensor, what is the first thing that comes to mind? In most cases it is probably the inductive proximity sensor and justly so because they are the most widely used sensor in automation today. But there are other types of proximity sensors. These include diffuse photoelectric sensors that use the reflectivity of the object to change states and proximity mode of ultrasonic sensors that use high frequency sound waves to detect objects. All of these sensors detect objects that are in close proximity of the sensor without making physical contact.

One of the most overlooked proximity sensors on the market today is the capacitive sensor. Why? For some, they have bad reputation from when they were released years ago as they were more susceptible to noise than most sensors. I have heard people say that they don’t discuss or use capacitive sensors because they had this bad experience in the past, however with the advancements of technology this is no longer the case.

Today capacitive sensors are available in as wide of a variety of housings and configurations as inductive sensors. They are available as small as 4mm in diameter, in hockey puck styles, extended temperature ranges, rectangular, square, with Teflon housings, remote sensing heads, adhesive cut-to-length for level detection and a hybrid technology that is capable of ignoring foaming and filming of liquids. The capability and diversity of this technology is constantly evolving.

Capacitive sensors are versatile in solving numerous 1applications. These sensors can be used to detect objects such as glass, wood, paper, plastic, ceramic, and the list goes on and on. The capacitive sensors used to detect objects are easily identified by the flush mounting or shielded face of the sensor. Shielding causes the electrostatic field to be short conical shaped much like the shielded version of the inductive proximity sensor. Typically, the sensing range for these sensors is up to 20 mm.

Just as there are non-flush or unshielded inductive sensors, there are non-flush capacitive sensors, and the mounting and housing2 looks the same. The non-flush capacitive sensors have a large spherical field which allows them to be used in level detection. Since capacitive sensors can detect virtually anything, they can detect levels of liquids including water, oil, glue and so forth and they can detect levels of solids like plastic granules, soap powder, sand and just about anything else. Levels can be detected either directly with the sensor touching the medium or indirectly where the sensor senses the medium through a non-metallic container wall. The sensing range for these sensors can be up to 30 mm or in the case of the hybrid technology it is dependent on the media.

The sensing distance of a capacitive sensor is determined by several factors including the sensing face area – the larger the better. The next factor is the material property of the object or dielectric constant, the higher the dielectric constant the greater the sensing distance. Lastly the size of the target affects the sensing range. Just like an inductive sensor you want the target to be equal to or larger than the sensor. The maximum sensing distance of a capacitive sensor is based on a metal target thus there is a reduction factor for non-metal targets.

As with most sensors today, the outputs of a capacitive sensor include PNP, NPN, push-pull, analog and the increasing popular IO-Link. IO-Link provides remote configuration, additional diagnostics and a window into what the sensor is “seeing”. This is invaluable when working on an application that is critical such as life sciences.

Most capacitive sensors have a potentiometer to allow adjustment of the sensitivity of the sensor to reliably detect the target. Today there are versions that have teach pushbuttons or a teach wire for remote configuration or even a remote amplifier. Although capacitive sensors can detect metal, inductive sensors should be used for these applications. Capacitive sensors are ideal for detecting non-metallic objects at close ranges, usually less than 30 mm and for detecting hidden or inaccessible materials or features.

Just remember, there is one more proximity sensor. Don’t overlook the capabilities of the capacitive sensor.

Jack Moermond has more than 41 years of experience in the manufacturing and automation industry. His roles have included controls engineer, systems specialist, systems department manager, and product manager. His product experience covers sensors, PLCs and drives, steel and paper industries, packaging, food and beverage industries, semicon and life sciences. In addition to his roles at various automation suppliers, Jack has taught PLC programming and various other training classes on automation devices.

Leave a Reply