Error Proof Stamping Applications with Pressure Sensors

When improving product quality or production efficiency, manufacturing engineers typically turn to automation solutions to error proof and improve their application. In stamping applications, that often leads to adding sensors to help detect the presence of a material or a feature in a part being formed, for example, a hole in a part. In the stamping world, this can be referred to as “In-Die Sensing” or “Die Protection.” The term “Die Protection” is used because if the sensors do not see the material in the correct location when forming, then it could cause a die crash. The cost of a die crash can add up quickly. Not only is there lost production time, but also damage to the die that can be extremely costly to repair. Typically, several sensors are used throughout the die to look for material or features in the material at different locations, to make sure the material is present to protect the die. Manufacturing engineers tend to use photoelectric and/or inductive proximity sensors in these applications; however, pressure sensors are a cost-effective and straightforward alternative.

In today’s stamping applications, manufacturing engineers want to stamp parts faster while reducing downtime and scrap. One growing trend in press shops is the addition of nitrogen on the dies. By adding nitrogen-filled gas springs and/or nitrogen gas-filled lifters, the press can run faster and cycle parts through quicker.

Typically, the die is charged with nitrogen before the press starts running parts. Today, many stamping plants rely on an analog dial gauge (image 1) to determine if there is sufficient nitrogen pressure to operate safely. When a new die is set in the press, someone must look at the gauge and make sure it is correct before running the press. There is no type of signal or feedback from this gauge to the PLC or the press; therefore, no real error proofing method is in place to notify the operator if the pressure rating is correct or even present before starting the press. If the operator starts running the press without any nitrogen for the springs, then it will not cycle the material and can cause a crash.

11

Another, likely more significant problem engineers face is a hole forming in one of the hoses while they are running. A very small hole in a hose may not be noticeable to the operator and may not even show up on the analog dial gauge. Without this feedback from the gauge, the press will continue to run and increase the likelihood that the parts will be stamped and be out of specification, causing unnecessary scrap. Scrap costs can be quite large and grow larger until the leak is discovered. Additionally, if the material cannot move through the press properly because of a lack of nitrogen pressure to the springs or lifters, it could cause material to back up and cause a crash.

By using a pressure sensor, you can set high and low pressure settings that will give an output when either of those is reached. The outputs can be discrete, analog, or IO-Link, and they can be tied to your PLC to trigger an alarm for the operator, send an alert to the HMI, or even stop the press. You can also have the PLC make sure pressure is present before starting the press to verify it was adequately charged with nitrogen during set up.

Adding an electronic pressure sensor to monitor the nitrogen pressure is a simple and cost-effective way to error proof this application and avoid costly problems.

One Reply to “Error Proof Stamping Applications with Pressure Sensors”

  1. Will Healy III says:

    Great advice Jason!

Leave a Reply