Level Sensing in Machine Tools

Certainly the main focus in machine tools is on metal cutting or metal forming processes.

To achieve optimum results in cutting processes coolants and lubricants are applied. In both metal cutting and metal forming processes hydraulic equipment is used (as hydraulics create high forces in compact designs). For coolant, lubricant and hydraulic tanks the usage of level sensors to monitor the tank level of these liquids is required.

Point Level Sensing

For point level sensing (switching output) in many cases capacitive sensors are used. These sensors detect the change of the relative electric permittivity (typically a change of factor 10 from gas to liquid). The capacitive sensors may be mounted at the outside of the tank wall if the tank material is non metallic like e.g. plastic or glass. The installation may even be in retrofit applications yet limited to non metallic tanks up to a certain wall thickness.

When using metal tanks the capacitive sensors enter the inner area of the tank via a thread and a sealing component. Common thread sizes are: M12x1, M18x1, M30x1,5, G 1/4″, NPT 1/4″ etc. For conductive liquids specially designed capacitive level sensors may be used which ignore build up at the sensing surface.

Continuous Level Sensing

Advanced process control uses continuous level sensing principles. The continuous sensor signals e.g. 0..10V, 4…20mA or increasingly IO-Link deliver more information to better control the liquid level, especially relevant in dynamic or precise applications.

When using floats the magnetostrictive sensing principle offers very high resolution of the level value. Tank heights vary from typically 200 mm up to several meters. Another advantage of this sensor principle is the high update rate (supporting fast closed loop systems for level sensing)

In many applications the  requirements for the level control solutions are not too demanding. In these cases the ultrasonic principle has gained significant market share within the last years. Ultrasonic sensors do not need a float, installation on the top of the tank is pretty easy, there are even sensor types available which may be used in pressurized tanks (typically up to 6 bar). As ultrasonic sensors quite often are used in special applications, field tests during the design in process are recommended.

Finally hydrostatic pressure transducers are an option for level sensing when using non pressurized tanks (typically  connected to ambient pressure through a bore in the upper area of the tank). With the sensor mounted at the bottom of the tank the level is indirectly measured through the pressure of the liquid column above the sensor (e.g. 10m of water level resembles 1 bar).


Concerning level sensing in metalworking applications in the first step it should be decided whether point level sensing is sufficient or continuous level sensing is required. Having chosen continuous level sensing there are several sensor principles available (selection depending on the application needs and features of the liquids and tank properties). It is always a good engineering practice to prove the preselected sensing concept with field tests.

To learn more visit www.balluff.com

About martinkurzblog

Fan of Industrial Automation
This entry was posted in All posts, Level Sensing, Liquid Level Sensing and tagged , , , , , , , , , . Bookmark the permalink.

Leave a Reply